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Topics

I Best rank-1 approximation of tensors;
I Orthogonal low rank tensor approximation;
I Convergence analysis of ADM.
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What is a tensor?

I An order-k tensor can be regarded as a k -dimensional
array of real or complex numbers on which algebraic
operations generalizing analogous operations on matrices
are defined.

I A vector is a tensor of order 1.
I A matrix is a tensor of order 2.
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I A real-valued tensor of order-k can be represented by
T = [τi1,...,ik ] ∈ RI1×I2×...×Ik with elements τi1,...,ik accessed
via k indices.

I A tensor of the form

k⊗
`=1

u(`) = u(1) ⊗ . . .⊗ u(k) := [u(1)
i1
. . . u(k)

ik
]

where elements are the products of entries from vectors
u(`) ∈ RI` , ` = 1, . . . , k , is said to be of rank one.
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Best Rank-1 Approximation

I Given T ∈ RI1×...×Ik , determine
• unit vectors u(`) ∈ RI` , ` = 1, . . . k , and
• scalar λ ∈ R,

such that ∥∥∥T − λu(1)⊗. . .⊗u(k)
∥∥∥2

F

is minimized.
• For fixed unit vectors u(1), . . . ,u(k), the optimal value of λ is

λ = λ
(

u(1), . . . ,u(k)
)

=

〈
T ,

k⊗
`=1

u(`)

〉
.
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Symmetric Tensor

An order-k square tensor T is said to be symmetric if

τi1,...,ik = τiσ(1),...,iσ(k)

with respect to all possible permutations σ over the integers
{1, . . . , k}.
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Background of Symmetric Case

I (Qi, 2011) conjectured and (Zhang etc., 2012) proved that
the best symmetric rank-1 approximation to a symmetric
tensor is its best rank-1 approximation .

I The best rank-1 approximation to a symmetric tensor ’can
be chosen’ symmetric (Friedland, 2013).

I There might be non-symmetric best rank-1 approximations
(Friedland, 2013) for a symmetric tensor.
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Background of Algorithms

I The alternating least squares (ALS) method works on
improving one factor u(`) a time (Kroonenberg etc., 1980).

I However, the method suffers from slow convergence and
easy stagnation at a local solution.

I Alternating two factors simultaneously by SVD was
mentioned in (Lathauwer etc., 2000) with no particular
elaboration.

I (Friedland etc., 2013) was more carefully postulated with
numerical testing on some synthetic and real data sets of
third-order tensors.
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Comparison of Two Ideas

I SVD approach has the obvious advantage that, starting
from the same point, one step of SVD-based iteration is
superior to two consecutive steps of ALS iteration.

I There is no theory at present to support that the
improvement by the SVD-based iteration will continue to be
superior in the long run.

I Through numerical experiments, however, it has been
suggested that for large scale data the SVD-based method
might have better limiting behavior leading to better
approximations (Friedland etc., 2013).
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Convergence

I The convergence theory for the ALS method was
established much later than the method had been put into
practice (Comon etc., 2009), (Uschmajew, 2012) and
(Wang etc., 2014).

I For the SVD-based algorithm, the convergence of the
generalized Rayleigh quotients is obvious, but the
convergence analysis for the iterates themselves has been
elusive in the literature (Friedland etc., 2013).

I (Yang etc., 2016) investigates the convergence theory by
using the Łojasiewicz gradient inequality.
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Our Contributions

I We provide a rigorous mathematical proof for the
convergence of iterates from specific SVD-based
algorithms.

I Our approach relies on only the continuity of singular
vectors and real analysis.
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Lemma

Given a matrix A ∈ Rm×n, then the global maximum of the
generalized Rayleigh quotient

max
y ∈ Rm, ‖y‖ = 1
z ∈ Rn, ‖z‖ = 1

y>Az

is precisely the largest singular value σ1 of A, where the global
maximizer (y1, z1) consists of precisely the corresponding left
and right singular vectors. The best rank-1 approximation to A
is given by σ1y1z>1 . In the event that A ∈ Rm×m is symmetric
and that the largest singular value of A is simple, then y = ±z
depending on the sign of the dominant eigenvalue λ1 = ±σ1
and, hence, the best rank-1 approximation to A is symmetric.
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Linear Mapping

Given a fixed partitioning JkK = α ∪ β, we shall regard an
order-k tensor T ∈ RI1×...×Ik as a "matrix representation" of a
linear operator mapping order-s tensors to order-t tensors.
Specifically, we identify T with the linear map

Tβ : RIα1×...×Iαs → RIβ1×...×Iβt ,

such that for any S ∈ RIα1×...×Iαs ,
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Linear Mapping

we have

Tβ(S) := T~β S = [〈τ[:|`1,...,`t ],S〉] ∈ RIβ1×...×Iβt

where

〈τ[:|`1,...,`t ],S〉 :=

Iα1∑
i1=1

. . .

Iαs∑
is=1

τ[i1,...,is|`1,...,`t ]si1,...,is

is the Frobenius inner product generalized to multi-dimensional
arrays.
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Cyclic Progression for Symmetric Case (A1)
for p = 0, 1, · · · , do

for ` = 1, 2, · · · , k − 1, do
β` = (`, ` + 1)

C(`)

[p]
= T~β`

⊗`−1
i=1 u(i)

[p+1]
⊗
⊗k

i=`+2 u(i)
[p]

[u, s, v] = svds(C(`)

[p]
, 1) {Dominant singular value triplet via Matlab routine svds}

if u1 < 0 then
u = −u {Assume the generic case that u1 6= 0; otherwise, use another entry.}

end if
u(`)

[p+1]
:= u {If ` = 1, this is û(1)

[p+1]
; otherwise this is the second update u(`)

[p+1]
, if

2 ≤ ` < k .}
û(`+1)

[p+1]
:= u {Skipping this step will not affect C(`+1)

[p]
at Line 4.}

λ
(`)

[p+1]
:= s

end for
βk = (k, 1)

C(k)

[p]
= T~βk

⊗k−1
i=2 u(i)

[p+1]

[u, s, v] = svds(C(k)

[p]
, 1) {Dominant singular value triplet via Matlab routine svds}

u(k)

[p+1]
:= u {Adjust the sign properly as in Line 6.}

u(1)

[p+1]
:= u

λ
(k)

[p+1]
:= s

end for
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Randomization for Symmetric Case (A2)

t ← 0
λ0 ←

〈
T ,
⊗k
`=1 u(`)

〉
repeat

t ← t + 1
σ ← random permutation of {1, . . . , k}
βt ← (σk−1, σk ) {Randomly select two factors}
Ct ← T~βt

⊗k−2
i=1 u(σi )

[ut , st , vt ] = svds(Ct , 1) {Dominant singular value triplet via Matlab routine svds}
if (ut )1 < 0 then

ut = −ut

end if
λt ← st

u(σk−1), u(σk ) ← ut

until λt meets convergence criteria
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Post-randomization for Symmetric Case (A3)

t ← 0
µ0 ←

〈
T ,
⊗k
`=1 u(`)

〉
repeat

t ← t + 1
Ct ← T~

⊗k−2
i=1 u(i)

[ut , st , vt ] = svds(Ct , 1) {Dominant singular value triplet via Matlab routine svds}
σ ← random permutation of {1, . . . , k}
if (ut )1 < 0 then

ut = −ut

end if
µt ← st

u(σk−1), u(σk ) ← ut {Randomly replace two factors}

until µt meets convergence criteria
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Cyclic Progression for Non-symmetric Case (A4)
for p = 0, 1, · · · , do

for ` = 1, 2, · · · , k − 1, do
β` = (`, ` + 1)

C(`)

[p]
= T~β`

⊗`−1
i=1 u(i)

[p+1]
⊗
⊗k

i=`+2 u(i)
[p]

{A matrix of size I` × I`+1}

[u, s, v] = svds(C(`)

[p]
, 1)

if u1 < 0 then
u = −u, v = −v {Assume the generic case that u1 6= 0; otherwise, use another
entry.}

end if
u(`)

[p+1]
:= u

û(`+1)

[p+1]
:= v {Skipping this step will not affect C(`+1)

[p]
at Line 4.}

λ
(`)

[p+1]
:= s

end for
βk = (1, k) {Not (k, 1)!}
C(k)

[p]
= T~βk

⊗k−1
i=2 u(i)

[p+1]
{A matrix of size I1 × Ik }

[u, s, v] = svds(C(k)

[p]
, 1)

u(k)

[p+1]
:= v {After adjusting the signs of u and v properly as in Line 6.}

u(1)

[p+1]
:= u

λ
(k)

[p+1]
:= s

end for
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Randomization for Non-symmetric Case (A5)

t ← 0
λ0 ← 〈T ,

⊗k
`=1 u(`)〉

repeat
t ← t + 1
σ ← random permutation of {1, . . . , k}
βt ← (σk−1, σk )

Ct ← T~βt

⊗k−2
i=1 u(σi )

[ut , st , vt ] = svds(Ct , 1) {Dominant singular value triplet via Matlab routine svds, assume
uniqueness}
if (ut )1 < 0 then

u = −ut , v = −vt {Assume the general case that (ut )1 6= 0; otherwise, use another
entry}

end if
λt ← st

u(σk−1) ← ut , u(σk ) ← vt

until λt meets convergence criteria



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

Convergence of Objective Values

Because the SVD is involved, the generalized Rayleigh
quotients are bounded and monotone increasing.
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Convergence of Iterates

Theorem

For almost all order-k tensors T and arbitrary starting points,
the vector sequence {(u(1)

t , . . . ,u(k)
t )} generated by Algorithm

SVD randomization converges to a local maximizer of the
generalized Rayleigh quotient.
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Real Analysis

Lemma

(Moré etc., 1983) Assume that a∗ is an isolated accumulation
point of a sequence {at} such that for every subsequence {atj}
converging to a∗, there is an infinite subsequence {atj i} such
that |atj i +1 − atj i | → 0. Then the whole sequence {at}
converges to a∗.
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Proof

I There is a subsequence {u(`)
tj } converges to the same limit

point for all ` = 1, . . . , k (symmetric case).
I For almost all tensors T , the accumulation points are

geometrically isolated.

I ‖u(`)
tj +1 − u(`)

tj ‖ → 0.
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Numerical Example

All the experiments in this thesis are performed on a MacBook
with 2.3 GHz Intel Core i7 processor and 16 GB 1600 MHz
DDR3 memory running MATLAB with version R2015a
(8.5.0.19613).
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Numerical Example for Symmetric Tensor

I Compare CPU time needed by our A1, A2, A3, symmetric
SVD, conventional ALS and symmetric ALS.

I Order-3 and order-4 tensors with dimension 2p.
I Execute each algorithm by 20 runs with random initial unit

vectors.
I Stopping criteria is the iteration terminates when three

consecutive generalized Rayleigh quotients do not vary
more than the tolerance 10−8.
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CPU Time For Symmetric Case
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Observations

I They may converge to different limit points.
I A3 is fastest especially for large p.
I ALS and A2 perform better when p is small.
I Compared to randomise methods A2 And A3, A1 is less

effective for both small and large p.



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

Numerical Example for Non-symmetric Tensor

I Compare CPU time required by A4, A5, ASVD, MASVD,
block SVD (BSVD).

I Order-3 and order-4 tensors with dimension 2p.
I Execute each algorithm by 20 runs with random initial unit

vectors.
I Stopping criteria is the iteration terminates when three

consecutive generalized Rayleigh quotients do not vary
more than the tolerance 10−5.



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

CPU Time For Non-symmetric Case
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Observations

I For problems of modest sizes, the cost of SVD
computation outruns that of the high-order power method.

I For odd order tensors, the BSVD slows down.
I For order-4 tensors, A5 and the BSVD method are about

equally fast.
I A4 should always be less effective than A5.
I The MASVD requires multiple ASVD calculation, so it is

more expensive than ASVD.
I The ASVD checks through all possible permutations, so its

performance is about the same as that of the A4.
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Tensor Decompositions

I Tucker Decomposition

T =
∑

j1,j2,...,jk

cj1,j2,...,jk u(1)
j1
⊗ ...⊗ u(k)

jk

I CANDECOMP/PARAFAC (CP) Decomposition

T =
∑

j

λju
(1)
j ⊗ ...⊗ u(k)

j .
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Applications

Tensor decomposition has been applied in a wide range of
areas:

I signal processing, numerical linear algebra, computer
vision, numerical analysis, data mining and analysis,

I graph analysis, neuroscience, image processing,
component analysis, network analysis, scientific
computing,

I telecommunications, independent component analysis
(ICA) , Newton potential, stochastic PDEs.
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Challenges and ill-posedness

I Best low rank approximation of a matrix (k = 2) always
exists. (Eckart-Young Theorem)

I The rank-1 approximation is theoretically guaranteed to
have a global optimum.

I Best rank-R (R > 1) approximation for high-order tensors
may not exist .
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Example

Let u1,v1 ∈ RI1 , u2,v2 ∈ RI2 , and u3,v3 ∈ RI3 be vectors such
that each pair ui ,vi is linearly independent. Define tensor

T := u1 ⊗ u2 ⊗ v3 + u1 ⊗ v2 ⊗ u3 + v1 ⊗ u2 ⊗ u3 ∈ RI1×I2×I3 ,

and for each n ∈ N,

Tn := n
(

u1 +
1
n

v1

)
⊗
(

u2 +
1
n

v2

)
⊗
(

u3 +
1
n

v3

)
−nu1⊗u2⊗u3.

Then T has rank 3 and rank of Tn is at most 2. But
‖Tn − T‖ → 0 as n→∞. Therefore, T does not have a best
rank-2 approximation.
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Solution
I Orthogonality requirement ensures the existence.

1. Complete orthogonality:
For all i = 1, . . . , k , and 1 ≤ r1 6= r2 ≤ R, 〈u(i)

r1 ,u
(i)
r1 〉 = 1, and

〈u(i)
r1 ,u

(i)
r2 〉 = 0.

2. Semi-orthogonality:
For all i = 1, . . . , k , and 1 ≤ r1 ≤ R, 〈u(i)

r ,u
(i)
r 〉 = 1 and there

is one i such that

〈u(i)
r1 ,u

(i)
r2 〉 = 0, ∀1 ≤ r1 6= r2 ≤ R.

3. Orthogonality:
For all i = 1, . . . , k , and 1 ≤ r ≤ R, 〈u(i)

r ,u
(i)
r 〉 = 1, and for

some 1 ≤ i1 < . . . < iµ ≤ k ,〈
u(i1)

r1 ,u(i1)
r2

〉
= 0, . . . ,

〈
u(iµ)

r1 ,u(iµ)
r2

〉
= 0, ∀1 ≤ r1 6= r2 ≤ R.



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

Orthogonal Low Rank Approximation

I Given T ∈ RI1×...×Ik , determine
• unit vectors u(i)

r ∈ RIi , i = 1, . . . k ,
• scalars λr ∈ R,

such that ∥∥∥∥T −
R∑

r=1

λr

k⊗
i=1

u(i)
r︸ ︷︷ ︸

Hr

∥∥∥∥2

F
,

is minimized subject to the mutual orthogonality condition
that

〈Hr1 ,Hr2〉 =
k∏

i=1

〈
u(i)

r1
,u(i)

r2

〉
= δr1r2 , for all 1 ≤ r1, r2 ≤ R,
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Open Question

I Complete orthogonal low rank approximation are studied in
(Chen etc., 2008).

I Semi-orthogonal low rank approximation of tensors are
studied in (Wang etc., 2015).

I It is interesting to impose orthogonality to more than one
factor matrix.

• (Wang etc., 2015) pointed that "More study is needed".
• (Wang etc., 2015) addressed that "The question of more

than one semi-orthogonal factor matrix, except for the case
of complete orthogonality, remains open".
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Our Problem

I Orthogonal low rank approximation:min
∥∥∥∥T −

∑R
r=1 λr

⊗k
i=1 u(i)

r

∥∥∥∥2

F
,

subject to orthogonality constraint.
(1)

I Orthogonality constraint:〈
u(i)

r ,u(i)
r

〉
= 1,For all i = 1, . . . , k , and 1 ≤ r ≤ R〈

u(k−µ+1)
r1

,u(k−µ+1)
r2

〉
= 0, . . . ,

〈
u(k)

r1
,u(k)

r2

〉
= 0,

∀1 ≤ r1 6= r2 ≤ R.
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An Equivalent Formulation

I The optimal scales λr can also be interpreted as the length
of the projection of the "vector" T onto the "unit vector" Hr
under the Frobenius inner product,

λr =

〈
T ,

k⊗
i=1

u(i)
r

〉
=

〈
T~`

(
`−1⊗
i=1

u(i)
r ⊗

k⊗
i=`+1

u(i)
r

)
,u(`)

r

〉
.

I The orthogonal low rank approximation problem (1) can be
reformulated as{

max
∑R

r=1 λ
2
r ,

subject to the orthogonality constraint.
(2)
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Existing Algorithms

I For matrices (k = 2), the best low rank approximation is
TSVD (Eckart-Young theorem).

I For general tensors (k > 2), the "workhorse" algorithm for
orthogonal low rank approximation of tensor has been
alternating least squares (ALS) method.

• (Wang etc., 2015) proved convergence globally.
• Numerical computation of the completely orthogonal in

(Chen etc., 2008).
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Contributions

I We develop an SVD-based algorithm which updates two
factors simultaneously.

I To address the orthogonality, we apply polar
decomposition for µ factors.

I The convergence of our SVD-based algorithm is analyzed
for both objective function and iterates themselves.
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Algorithm Description

I The update of first k − µ factors by SVD.
• If k − µ is even, update u(`)

r and u(`+1)
r simultaneously by

SVDs for ` = 1,3, . . . , k − µ− 1.
• If k − µ is odd, update u(k−µ−1)

r twice.

I To address the orthogonality constraint, update u(`)
r for

k − µ+ 1 ≤ ` ≤ k by polar decomposition.
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Algorithm 6

Require: Starting unit vectors u(`)

r.[0]
∈ RI` and u(`)

i,[0]
⊥ u(`)

j,[0]
for ` = k − µ + 1, . . . , k

T = 1
‖T‖F

T {Normalize T }
τ := k − µ− 1
if k − µ is odd then
τ := k − µ− 2

end if
for p = 0, 1, . . . , do

for ` = 1, 3, . . . , τ do
β` = (`, ` + 1) do
for r = 1, 2, . . . ,R,

C(`)

r,[p+1]
= T~β`

(⊗`−1
i=1 u(i)

r,[p+1]
⊗
⊗k

i=`+2 u(i)
r,[p]

)
{A matrix of size I` × I`+1}

[u, s, v] = svds(C(`)

r,[p+1]
, 1) {Dominant singular value triplet via Matlab routine svds;assume

uniqueness}
if u1 < 0 then
u = −u, v = −v

end if
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u(`)

r,[p+1]
:= u

u(`+1)

r,[p+1]
:= v {if k − µ is even, use û(k−µ−2)

r,[p+1]
:= v}

λ
(`)

r,[p+1]
:= s, λ

(`+1)

r,[p+1]
:= s {if k − µ is odd, use λ̂(k−µ−2)

r,[p+1]
:= s}

end for
end for
if τ = k − µ− 2 then
βk−µ−1 = (k − µ− 1, k − µ)

for r = 1, 2, . . . ,R, do
C(k−µ−1)

r,[p+1]
= T~βk−µ−1

(⊗k−µ−2
i=1 u(i)

r,[p+1]
⊗
⊗k

i=k−µ+1 u(i)
r,[p]

)
{A matrix of size

Ik−µ−1 × Ik−µ}
[u, s, v] = svds(C(k−µ−1)

r,[p+1]
, 1) {Dominant singular value triplet via Matlab routine svds;assume

uniqueness}
if u1 < 0 then
u = −u, v = −v

end if
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u(k−µ−1)

r,[p+1]
:= u, u(k−µ)

r,[p+1]
:= v

λ
(k−µ−1)

r,[p+1]
:= s, λ(k−µ)

r,[p+1]
:= s

end for
end if
for ` = k − µ + 1, . . . , k do
for r = 1, 2, . . . ,R, do

v(`)

r,[p+1]
= T~`

(⊗`−1
i=1 u(i)

r,[p+1]
⊗
⊗k

i=`+1 u(i)
r,[p]

)
{define columns of V (`)

[p+1]
}

λ̂
(`)

r,[p+1]
:= 〈v(`)

r,[p+1]
, u(`)

r,[p]
〉 {define diagonals of Λ

(`)

[p+1]
}

end for
[U(`)

[p+1]
,S(`)

[p+1]
] = poldec(V (`)

[p+1]
Λ

(`)

[p+1]
)

for r = 1, 2, . . . ,R, do
u(`)

r,[p+1]
:= U(`)

[p+1]
(:, r)

λ
(`)

r,[p+1]
:= S(`)

[p+1]
(r , r)(= 〈v(`)

r,[p+1]
, u(`)

r,[p+1]
〉)

end for
end for

end for
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Trace Maximizing Property

Lemma

Let matrix A ∈ Rm×n with m ≥ n have polar decomposition

A = QS,

where Q ∈ Rm×n is the column orthogonal polar factor and
S ∈ Rn×n is the symmetric positive semi-definite factor. Then

Q = arg max
P∈Rm×n, PT P=I

Trace
(

PT A
)
.

Moreover, if A is of full column rank, then Q above is unique.
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Convergence of Objective Values
I As SVD is involved for the first k − µ factors, the

generalized Rayleigh quotients are bounded and
monotone increasing,

R∑
r=1

(λr ,[p])
2 ≤

R∑
r=1

(λ
(1)
r ,[p+1])

2 ≤ . . . ≤
R∑

r=1

(λ
(k−µ)
r ,[p+1])

2.

I Polar decomposition is applied for last µ factors, by trace
maximizing property,

R∑
r=1

(λ
(k−µ)
r ,[p+1])

2 ≤
R∑

r=1

λ
(k−µ)
r ,[p+1]λ

(k−µ+1)
r ,[p+1] ≤ . . .

≤
R∑

r=1

λ
(k−1)
r ,[p+1]λ

(k)
r ,[p+1] ≤

R∑
r=1

(λ
(k)
r ,[p+1])

2 =
R∑

r=1

(λr ,[p+1])
2.
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Theorem

For almost all tensors T , the sequence
{

u(`)
r ,[p]

}
generated in

Algorithm 6 converges for ` = 1, . . . , k, r = 1, . . . ,R.

I Accumulation points are isolated.

I If subsequences
{

u(`)
r ,[pj ]

}
generated by Algorithm 6

converge simultaneously, then subsequences
{

u(`)
r ,[pj +1]

}
also converge simultaneously.

I
{

u(`)
r ,[pj ]

}
and

{
u(`)

r ,[pj +1]

}
converge to the same limiting

point.
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Numerical Example

Test Algorithm 6
I µ = 2 and R = 5;
I First 150 steps.

Comparison: by measuring
I Objective value

∑R
r=1 λ

2
r ;

I Iterate error
∑k

`=1
∑R

r=1 ‖u
(`)
r ,[p+1] − u(`)

r ,[p]‖
2
2.
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Test tensors R20×16×10×32:
I Random tensor: randomly generate.
I Stochastic tensor:

τi1,i2,i3,i4 =


c i1 6= i2, i2 6= i3, i3 6= i4
0 i1 = i2, i2 6= i3, i3 6= i4
1/20 otherwise

, where c is

randomly in (0,1) by the homogenous distribution such as∑
i1∈J20K τi1,i2,i3,i4 = 1 with ij 6= ij+1, j = 1,2,3.

I Cauchy tensor: τi1,i2,i3,i4 = 1
c(i1)+c(i2)+c(i3)+c(i4) , where c is a

random vector with size 32.
I Hilbert tensor: τi1,i2,i3,i4 = 1

i1+i2+i3+i4−3 .
I Toeplitz tensor: τi1+j,i2+j,i3+j,i4+j = τi1,i2,i3,i4 for

j ∈ Jmin(20− i1,16− i2,10− i3,32− i4)K.
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Initial vectors:
I ’Random Initial’–unit vectors u(`)

r for ` = 1, . . . , k and
r = 1, . . . ,R are generated randomly to satisfy
orthogonality constrain with µ = 2.

I ’Identity Initial’–each [u(`)
1 , . . . ,u(`)

R ] for ` = 1, . . . , k are
taken as the first R columns of identity matrices.

I ’Orthogonal Initial’–each [u(`)
1 , . . . ,u(`)

R ] for ` = 1, . . . , k are
taken as the first R columns of random orthonormal
matrices.

I ’Singular Value Initial’–the major left singular vectors of the
unfoldings of the tensors are used as initials.
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Comparison on Random Tensor
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Comparison on Stochastic Tensor
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Comparison on Cauchy Tensor

number of iteration
0 50 100 150

ob
je

ct
iv

e 
va

lu
e

×107

0

1

2

3

4

5

6

7

8

9

Objective Value on Cauchy Tensor

Random Initial
Identity Initial
Orthogonal Initial
Singular Value Initial

number of iteration
0 50 100 150

lo
g(

ite
ra

te
 e

rr
or

)

-70

-60

-50

-40

-30

-20

-10

0

10

Itertate Error on Cauchy Tensor

Random Initial
Identity Initial
Orthogonal Initial
Singular Value Initial



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

Comparison on Hilbert Tensor
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Comparison on Toeplitz Tensor

number of iteration
0 50 100 150

ob
je

ct
iv

e 
va

lu
e

400

500

600

700

800

900

1000

1100

Objective Value on Toeplitz Tensor

Random Initial
Identity Initial
Orthogonal Initial
Singular Value Initial

number of iteration
0 50 100 150

lo
g(

ite
ra

te
 e

rr
or

)

-25

-20

-15

-10

-5

0

5

Iterate Error on Toeplitz Tensor

Random Initial
Identity Initial
Orthogonal Initial
Singular Value Initial



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

Observations

Objective value:
I Objective value satisfies the monotone increasing property

for each iteration;
I For different initial vectors, the approximated objective

values may be different for the same test tensor, that is,
iterates may converge to different limit points.

• It is interesting to study for what tensors or what initial
guesses Algorithm 6 converges to the global optimum
(Chen etc., 2008).
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Observations

Iterates error:
I Iterates converge, but they are not monotone in each step.
I Iterates converge but slower than that of objective values.
I When it comes to the qualities of the final approximation,

among four different initial vectors, no any one does offer
obvious advantage.
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Definition of ADM

Alternating Direction Methods

Fixing all but one variable a time and alternating among
the variables.
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General Form

Many algorithms can be cast in the abstract form{
xk+1 = f (yk ),

yk+1 = g(xk+1),
k = 0,1, . . . ,

where f : U → V and g : V → U.
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Background

yk+1 = g(f (yk )), k = 0,1, . . . . (3)

I If g ◦ f is a contraction map, then the Banach fixed-point
theorem asserts that the iterates from (3) converge to a
unique fixed-point point.

I If g ◦ f is continuous and maps a convex compact set into
itself, then the Brouwer fixed-point theorem asserts that
there is a fixed-point y∗ such that g ◦ f (y∗) = y∗.
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General Form

For more complicated problems involving n variables
x(1), . . . ,x(n), a similar alternating iteration can be written in this
form

x(1)
k+1 = f (1)(x(2)

k ,x(3)
k , . . . ,x(n)

k ),

x(2)
k+1 = f (2)(x(1)

k+1,x
(3)
k , . . . ,x(n)

k ),
...

x(n)
k+1 = f (n)(x(1)

k+1,x
(2)
k+1, . . . ,x

(n−1)
k+1 ).

k = 0,1, . . . .
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Our Work

I We propose a general framework that can be applied to
many types of alternating direction methods for proving
convergence.

I The conditions entailed by this framework are mild and
easy to satisfy, so the theory should be of fundamental
significance to many algorithms.
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Lemma

Let F : U −→ U be a continuous map over a closed subset
U ⊂ Rn. Suppose that the sequence {zk} generated by
iterative scheme zk+1 = F (zk ) is well defined, bounded, and
has finitely many isolated accumulation points. Then

1. Either the sequence {zk} converges, or
2. There are disjoint neighborhoods of the accumulation

points such that, for k large enough, the consecutive
elements zk , zk+1, . . . visit each neighborhood in a cyclic
order.
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Main Theory

Theorem

Suppose that an alternating optimization method can be cast in
the general form. Write z = (x(1), . . . ,x(n)) where x(`) ∈ U(`)

and U(`) ⊂ RI` . Assume that
I a) The conditions in previous lemma are satisfied where

F (z) denotes the transition function of one complete sweep
of the alternating optimization, zk+1 = F (zk ).
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Theorem

I b) Each f (`) representing the optimization mechanism in
the `-th direction is continuously differentiable and returns
the unique global minimizer x(`)

k+1 of the restricted objective
function

h`(w) := h(x(1)
k+1, . . . ,x

(`−1)
k+1 ,w,x(`+1)

k , . . . ,x(n)
k ).

I c) The objective function h(z) is second order continuously
differentiable.
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Theorem

I d) One of the accumulation points z∗0 of {zk} is a local
minimizer of h(z) at which the Hessian ∇2h(z∗0) is
symmetric and positive definite.

Then the sequence {zk} converge.
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Applications to Some Known Cases

I The Gauss-Seidel method for solving a system of linear
equations.

I The power method for finding the dominant eigenvector.
I The alternating least squares method for computing the

QR decomposition.
I The alternating projection method for finding structured low

rank matrices.
I Best rank-one tensor approximation.
I Tucker nearest problem.
I Structured Kronecker approximation.
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Future Topics

I High order SVD;
I Quantum entanglement;
I Orthogonal symmetric tensor diagonalization;
I Segment CP approximation;
I Segment Tucker approximation.
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Thank you very much!
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