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Topics

» Best rank-1 approximation of tensors;
» Orthogonal low rank tensor approximation;
» Convergence analysis of ADM.
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What is a tensor?

» An order-k tensor can be regarded as a k-dimensional
array of real or complex numbers on which algebraic
operations generalizing analogous operations on matrices
are defined.

» A vector is a tensor of order 1.
» A matrix is a tensor of order 2.
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» A real-valued tensor of order-k can be represented by
T = [ri,..i] € RhxkX-xlk with elements 7;, _; accessed
via k indices.

» A tensor of the form

Ik

k
Qui =uV e u® = [ )
/=1

where elements are the products of entries from vectors
ul® e Rk, ¢ =1,... k,is said to be of rank one.
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Best Rank-1 Approximation

» Given T € Rh*-xk_ determine

e unit vectors ul® e R, ¢ =1, ...k, and
e scalar A € R,

such that )
H T- Vg, .®u(k)H
F
is minimized.
« For fixed unit vectors u(™ ... u(®, the optimal value of X is

A=A (u(”,...,u(")) - <T,é)u“>>.
=1



Best Rank-1 Approximation

Orthogonal Low Rank Approximation Convergence Analysis of ADM References
©00000000000 00000 00000
0000000000000 00000000000 000000
0000000000

Symmetric Tensor

An order-k square tensor T is said to be symmetric if
ity = T,

with respect to all possible permutations o over the integers

(1,...,k}.
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Background of Symmetric Case

» (Qi, 2011) conjectured and (Zhang etc., 2012) proved that
the best symmetric rank-1 approximation to a symmetric
tensor is its best rank-1 approximation .

» The best rank-1 approximation to a symmetric tensor 'can
be chosen’ symmetric (Friedland, 2013).

» There might be non-symmetric best rank-1 approximations
(Friedland, 2013) for a symmetric tensor.
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Background of Algorithms

» The alternating least squares (ALS) method works on
improving one factor u) a time (Kroonenberg etc., 1980).

» However, the method suffers from slow convergence and
easy stagnation at a local solution.

» Alternating two factors simultaneously by SVD was
mentioned in (Lathauwer etc., 2000) with no particular
elaboration.

» (Friedland etc., 2013) was more carefully postulated with

numerical testing on some synthetic and real data sets of
third-order tensors.
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Comparison of Two Ideas

» SVD approach has the obvious advantage that, starting
from the same point, one step of SVD-based iteration is
superior to two consecutive steps of ALS iteration.

» There is no theory at present to support that the
improvement by the SVD-based iteration will continue to be
superior in the long run.

» Through numerical experiments, however, it has been
suggested that for large scale data the SVD-based method
might have better limiting behavior leading to better
approximations (Friedland etc., 2013).
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Convergence

» The convergence theory for the ALS method was
established much later than the method had been put into
practice (Comon etc., 2009), (Uschmajew, 2012) and
(Wang etc., 2014).

» For the SVD-based algorithm, the convergence of the
generalized Rayleigh quotients is obvious, but the
convergence analysis for the iterates themselves has been
elusive in the literature (Friedland etc., 2013).

» (Yang etc., 2016) investigates the convergence theory by
using the tojasiewicz gradient inequality.
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Our Contributions

» We provide a rigorous mathematical proof for the
convergence of iterates from specific SVD-based
algorithms.

» Our approach relies on only the continuity of singular
vectors and real analysis.

References
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Lemma

Given a matrix A € R™*" then the global maximum of the
generalized Rayleigh quotient

max y' Az
y €RT, ly|| =1
ze R |z|| =1

is precisely the largest singular value o1 of A, where the global
maximizer (y1,21) consists of precisely the corresponding left
and right singular vectors. The best rank-1 approximation to A
is given by o1y12{ . In the event that A € R™ ™ js symmetric
and that the largest singular value of A is simple, theny = +z
depending on the sign of the dominant eigenvalue \1 = +o
and, hence, the best rank-1 approximation to A is symmetric.
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Linear Mapping

Given a fixed partitioning [k] = o U 3, we shall regard an
order-k tensor T € R"**k as a "matrix representation” of a
linear operator mapping order-s tensors to order-t tensors.
Specifically, we identify T with the linear map

% : Rla1 X...Xlas N Rlﬁ1 ><...><lﬁt7

such that for any S € Rt XXl
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Linear Mapping

we have
T5(S) = T S = [(tp1ey....e S)] € Rl

where

I /

aq as
<7—[1V1,---7ft]7 S) = Z e Z it s €4 100, 00] St i

h=1 is=1

is the Frobenius inner product generalized to multi-dimensional
arrays.
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Cyclic Progression for Symmetric Case (A1)
forp=0,1,--- ,do
forc=1,2,--- k—1,do
ﬁe = (Z, £+ 1)
(£) _ e—1 () u®
Clot = T®a, @' U Oz Yy
[u,s,v] = svds(C[p] 1) {Dominant singular value triplet via Matlab routine svds}
if uy < 0then
u=-u {Assume the generic case that u; # 0; otherwise, use another entry.}
end if
u([’f)m =u {If ¢ =1, thisis ﬁfp e otherwise this is the second update u[p+1]‘ if
2<t<kl}
A(Ufﬂ]) =u {Skipping this step will not affect C[(;]“) at Line 4.}
(€)
Ay 7= 8
end for
ﬁ(kk): (k, 1) 0
k—
Cp = T®sy ®5 U]
[u s,v] = svds(C[p] ,1) {Dominant singular value triplet via Matlab routine svds}
“Eg)u] =u {Adjust the sign properly as in Line 6.}
(1)
K
Ao 7= 8

end for
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Randomization for Symmetric Case (A2)

t«0
xo e (T.@u)
repeat
t—t+1
o < random permutation of {1,..., k}
B¢ < (ok—1,0k) {Randomly select two factors}
Ci + Top, @2 ulw)
[ug, st, vi] = svds(Cy, 1) {Dominant singular value triplet via Matlab routine svds}
if (us)1 < 0 then
u; = —Uuy
end if
At < St

ulTk=1) ulew)  y,

until \; meets convergence criteria



Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References

00000000000 e 00000 00000
0000000000000 00000000000 000000
0000000000

Post-randomization for Symmetric Case (A3)

t« 0
no (T, @ u?)
repeat
t—t+1
[ug, 8¢, vi] = svds(Cy, 1) {Dominant singular value triplet via Matlab routine svds}
o < random permutation of {1, ..., k}
if (us)1 < 0 then
U = —u
end if
Kt < St
ulk=1) ulok)  yu, {Randomly replace two factors}

until x; meets convergence criteria
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Cyclic Progression for Non-symmetric Case (A4)
forp=0,1,---,do
fore=1,2,--- ,k—1,do
Be=,£4+1)
C[(; =Tep, @' “|p+1]®®: 012 fl’J)] {A matrix of size Ip x o1}
[u,s,v] = svds(C[p] 1)
if uy < 0then
u=—uv=-v {Assume the generic case that u; # 0; otherwise, use another
entry.}
end if
W)= u
Af]fﬂ]) =v {Skipping this step will not affect C[(,f]”) at Line 4.}
Mol =8
end for
By =(1,k) {Not (k, 1)1}
cl) = Top, 5"l {A matrix of size f; x I}

[u,s,v] = svds(C[p] ,1)
ul®

Ui =V {After adjusting the signs of u and v properly as in Line 6.}
u®
Ypryy =4
(k)
Moty = S

end for
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Randomization for Non-symmetric Case (A5)

t«<0
Ao+ (T, @%_, u®)
repeat
t«—t+1
o « random permutation of {1, ..., k}

ﬁt — (Uk—1 5 Uk)

Ct T®5t ®:(:712 U(Ui)

[ug, 8¢, vi] = svds(Ct, 1) {Dominant singular value triplet via Matlab routine svds, assume

uniqueness}

if (us)1 < 0 then
u=—u;,v=—V; {Assume the general case that (u;)1 # 0; otherwise, use another
entry}

end if

At < St

ulk=1)  uy, uloK) — v,

until \; meets convergence criteria
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Convergence of Objective Values

Because the SVD is involved, the generalized Rayleigh
quotients are bounded and monotone increasing.

References
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Convergence of lterates

Theorem

For almost all order-k tensors T and arbitrary starting points,

the vector sequence {(ug1 ), e ugk))} generated by Algorithm
SVD randomization converges to a local maximizer of the
generalized Rayleigh quotient.
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Real Analysis

Lemma

(Moré etc., 1983) Assume that a* is an isolated accumulation
point of a sequence {a} such that for every subsequence {ay}
converging to a*, there is an infinite subsequence {ay } such
that|a; .1 — ay,| — 0. Then the whole sequence {a:}
converges to a*.
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Proof

» There is a subsequence {ug_g)} converges to the same limit
pointforall ¢ = 1,..., k (symmetric case).

» For almost all tensors T, the accumulation points are
geometrically isolated.

l ¢
> Juf?y —ui?) — 0.
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Numerical Example

All the experiments in this thesis are performed on a MacBook
with 2.3 GHz Intel Core i7 processor and 16 GB 1600 MHz
DDR3 memory running MATLAB with version R2015a
(8.5.0.19613).
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Numerical Example for Symmetric Tensor

» Compare CPU time needed by our A1, A2, A3, symmetric
SVD, conventional ALS and symmetric ALS.

» Order-3 and order-4 tensors with dimension 2°.

» Execute each algorithm by 20 runs with random initial unit
vectors.

» Stopping criteria is the iteration terminates when three

consecutive generalized Rayleigh quotients do not vary
more than the tolerance 10-8.
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CPU Time For Symmetric Case

(;PU Time for Different Methods (Order-3 Tensors)

(EPU Time for Different

(Order-4 Tensors)

s 7 s f h
exponent p (dimension n = 27)

s 3 7
exponent p (dimension n = 27)
FIGURE 6.2. Breakdown of CPU time for comparison among different methods.
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(e}

o

Observations

>

They may converge to different limit points.
A3 is fastest especially for large p.
ALS and A2 perform better when p is small.

Compared to randomise methods A2 And A3, A1 is less
effective for both small and large p.

v

v

v
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Numerical Example for Non-symmetric Tensor

» Compare CPU time required by A4, A5, ASVD, MASVD,
block SVD (BSVD).

» Order-3 and order-4 tensors with dimension 2°.

» Execute each algorithm by 20 runs with random initial unit
vectors.

» Stopping criteria is the iteration terminates when three

consecutive generalized Rayleigh quotients do not vary
more than the tolerance 10~°
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CPU Time For Non-symmetric Case

CPU Time for Different Methods (k=3) CPU Time for Different (k=4)

log(CPU time) (in second)
log(CPU time) (in second)

5 3 7

O 0 s .
exponent p (dimension n = 27) exponent p (dimension n = 2)

Figure 1: Comparison of CPU time among different methods.
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Observations

» For problems of modest sizes, the cost of SVD
computation outruns that of the high-order power method.

» For odd order tensors, the BSVD slows down.

» For order-4 tensors, A5 and the BSVD method are about
equally fast.

» A4 should always be less effective than A5.

» The MASVD requires multiple ASVD calculation, so it is
more expensive than ASVD.

» The ASVD checks through all possible permutations, so its
performance is about the same as that of the A4.
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Tensor Decompositions

» Tucker Decomposition

’
Z Cj17j2a 7//( j( )® ®u( )

Jtf2s--5dk
» CANDECOMP/PARAFAC (CP) Decomposition

T=> yuVe . oul
i

References
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Applications

Tensor decomposition has been applied in a wide range of
areas:

» signal processing, numerical linear algebra, computer
vision, numerical analysis, data mining and analysis,

» graph analysis, neuroscience, image processing,
component analysis, network analysis, scientific
computing,

» telecommunications, independent component analysis
(ICA) , Newton potential, stochastic PDEs.
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Challenges and ill-posedness

» Best low rank approximation of a matrix (k = 2) always
exists. (Eckart-Young Theorem)

» The rank-1 approximation is theoretically guaranteed to
have a global optimum.

» Best rank-R (R > 1) approximation for high-order tensors
may not exist .
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Example
Let uy, vy € R, up, vo € Rk, and ug, v3 € R5 be vectors such
that each pair u;, v; is linearly independent. Define tensor
T=U®Uas®@V3z+ U Vo @ U3z + Vi ®Us ® Ug GRthZXlS,
and for each n € N,
1 1 1
n=nNn{Uy +—=Vq |®| U+ —Vo | Uz + —=V3 | —NU;RUs2&QU3.
n n n
Then T has rank 3 and rank of T, is at most 2. But

IT, — T|| — 0as n— oo. Therefore, T does not have a best
rank-2 approximation.
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Solution

» Orthogonality requirement ensures the existence.
1. Complete orthogonality:
ForaIIi_1 k,and1<r #r <R, U uly =1, and
<ul('1) ul’z > =0.
2. Semi-orthogonality:

Foralli=1,....k,and 1 < r; <R, (u? u?) = 1 and there
is one i such that

<u()u,2> 0, vi<n#r<R

3. Orthogonality: o
Foralli=1,....k,and1 < r <R, " u?) =1, and for
some 1 <i<...<i, <Kk,

<u§1") ug‘)> =0,..., <u£1"‘) ug“)> =0, Vi<rn#nrn<R.

proximation Orthogonal Low Rank Approximation Convergence Analysis of ADM References
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Orthogonal Low Rank Approximation
» Given T € Rh*-xk determine
o unitvectors ul’) e Rf, i =1,...k,
e scalars \; € R,
such that
R k 12
170 @u|
r=1 =t F
Hr
is minimized subject to the mutual orthogonality condition
that

k

(e H) = [T (u 0} = 6, forall 1<, <R,
i=1
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Open Question

» Complete orthogonal low rank approximation are studied in
(Chen etc., 2008).
» Semi-orthogonal low rank approximation of tensors are
studied in (Wang etc., 2015).
» |t is interesting to impose orthogonality to more than one
factor matrix.
e (Wang etc., 2015) pointed that "More study is needed".

e (Wang etc., 2015) addressed that "The question of more
than one semi-orthogonal factor matrix, except for the case
of complete orthogonality, remains open".
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Our Problem

» Orthogonal low rank approximation:

2
min ,

T — 25:1 )‘f®f'(:1 us’i) F (1)

subject to orthogonality constraint.

» Orthogonality constraint:
<u§i),u§i)> =1,Foralli=1,... k,and1 <r<R

<u$1k_“+1), ug‘_““)> =0,..., <u§1k), u(k)> =0,

r2

V1SI’1#I’2SR.
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An Equivalent Formulation

» The optimal scales A\, can also be interpreted as the length
of the projection of the "vector" T onto the "unit vector" H,
under the Frobenius inner product,

)\,:<T,§u,i)> <r®g <®u @I%uﬂ)) u€>

» The orthogonal low rank approximation problem (1) can be
reformulated as

{max 2?21 )\?, (2)

subject to the orthogonality constraint.
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Existing Algorithms

» For matrices (k = 2), the best low rank approximation is
TSVD (Eckart-Young theorem).

» For general tensors (k > 2), the "workhorse" algorithm for
orthogonal low rank approximation of tensor has been
alternating least squares (ALS) method.

e (Wang etc., 2015) proved convergence globally.
¢ Numerical computation of the completely orthogonal in
(Chen etc., 2008).
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Contributions

» We develop an SVD-based algorithm which updates two
factors simultaneously.

» To address the orthogonality, we apply polar
decomposition for . factors.

» The convergence of our SVD-based algorithm is analyzed
for both objective function and iterates themselves.
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Algorithm Description

» The update of first k — u factors by SVD.

o If kK — u is even, update ufe) and uﬁ“” simultaneously by
SVDsfor¢=1,3,...,k—nu—1.

o If k — uis odd, update u* ") twice.

» To address the orthogonality constraint, update uﬁé) for
k — 41 < ¢ < k by polar decomposition.

References
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Algorithm 6
o . . () Iy u'® — Kk _
Require: Starting unit vectors U € R and u [01 Ui fore =k —p+1,...,k

References

T= W T {Normalize T}

k—p—1

if Kk — pis odd then
Ti=Kk—pn-—2

end if

forp=0,1,...,do
fore=1,3,...
Be=(¢,£+1)do

T =

forr=1,2,...,R

(&) _
Cr,[p+1] -

uniqueness }
ifu; < 0then
u=—-u,v=-v
end if

,7do

T®g, (®, Ju L ® ., f’f[p]) {A matrix of size Iy X lo41)

— (¢)
[u,s,v] = svds(Cry[pH],

1) {Dominant singular value triplet via Matlab routine svds;assume
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(0 .,
U,y[pJH] =u
)y . alk—p—2) _
ur,[p+1] =V {if K — p is even, use ur,[p+1] =V}
(O] — 1) otk — 1y Sk—pn=2)  _
rps] TS /\r,[p+1] := s {if Kk — p is odd, use >\r,[p+1] = s}
end for
end for

ifr =k — p—2then
Bk—p—1=(k—p—1, k—p)
forr=1,2,...,R,do
K—p—1 kep—2 (i K i . .
CE,[p+M1] ) = T®p;_,,_ (®i5" ui,)[pﬂl ® @ik it u(r,)[p]) {A matrix of size
Ikt X le—p}

[u,s,v] = svds(CEk[;fﬂq), 1) {Dominant singular value triplet via Matlab routine svds;assume

uniqueness }
ifu; < 0then
Uu=—-uv=—v
end if
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(k=p—1) ._ (k=p) .
ur,[p+1] =u, ur Jp+1] T =V
(k—p—=1) . _ (k—p) .
Arpr] T8 ALl =S
end for
end if
fore=k—p+1,...,kdo
forr=1,2,...,R,do
(€)
Vilp+) =

52[)p+1] (v££€p+1]7 u%[)p]) {define diagonals of A[pzrﬂ }
end for
(£) () 1 _ (£)
(U 1y Sjp ) = Poldec( Vi Al )
forr=1,2,...,R,do
(£)
Ur s U[p+1]( n
() (£) (£) ut®
Ar o] = Sipuny (1 D= (Ve g U piy))
end for

end for

end for

®f p ur o ® Rk 21 u,)[p]> {define columns of V). 1

Convergence Analysis of ADM
00000
000000

lp+1]

References
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Trace Maximizing Property

Lemma
Let matrix A € R™" with m > n have polar decomposition

A= QS,

where Q € R™" js the column orthogonal polar factor and
S € R™7" js the symmetric positive semi-definite factor. Then

Q= arg max Trace (PTA> .
PeRmxn_ PTp—|

Moreover, if A is of full column rank, then Q above is unique.
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Convergence of Objective Values

» As SVD is involved for the first k — y factors, the

generalized Rayleigh quotients are bounded and
monotone increasing,

|

R R

2 M (k1)
D) £ D (o) <o S DOt~
r=1 r=1

r=1

» Polar decomposition is applied for last u factors, by trace
maximizing property,

R R
(k u) (k ) y(k=p+1)
Z r[p+1] Z r,lp+1] )‘ rfp+1] —
r=1

r=1

Il

R
(k=1) | (k) _ 2
= Z )‘f [P+1])‘r [p+1] Z r [p+1] - Z()‘n[pﬂl) .

r=1 r=1

References
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Theorem

For almost all tensors T, the sequence {uﬁé[)p]} generated in

Algorithm 6 converges for¢ =1,... . k,r=1,... R.

» Accumulation points are isolated.

r,[pj]
converge simultaneously, then subsequences {u(é) }

. r,[p+1]
also converge simultaneously.
)
g {ulf,[Pj]
point.

» If subsequences { u® } generated by Algorithm 6

} and { rg[)p+1]} converge to the same limiting
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Numerical Example

Test Algorithm 6

» u=2and R=5;

» First 150 steps.
Comparison: by measuring

» Objective value 7 | 22;

¢ ¢
> lterate error Y5 , S8 ||uf7[)p+1] - ufv[)p]Hg.

References
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Test tensors R20x16x10x32.

>

>

Random tensor: randomly generate.

Stochastic tensor:

c It # loyio # I3, I3 # g
Th iy s s = 0 I :l.g,l.g#l.3,l.37éll4 , Where c is

1/20 otherwise
randomly in (0, 1) by the homogenous distribution such as
Zi1e[[20]] Tiy yioyig iy = 1 with Ij 7& ij+1 7j = 1725 3.

: _ 1 :

Cauchy tensor: Tiyiaodaia = G 7 0(R)+o(B) o) where cis a
random vector with size 32.

_ 1
1,012,134 = i1 +12+I3+I4—3 )

T09p|itZ tensor: Tiy 4 i+, i3+ ia+j = Tit o, ls,ia for
j S [[mln(20 — i1, 16 — i2, 10 — i3,32 — l4)]]
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Initial vectors:

» 'Random Initial'—unit vectors ug) for¢=1,...,kand
r=1,..., R are generated randomly to satisfy
orthogonality constrain with p = 2.

» ’ldentity Initial'—each [usz), o 7u$§)] fore=1,... kare
taken as the first R columns of identity matrices.

» ’Orthogonal Initial'—each [ugg), e ug)] fori=1,... kare
taken as the first R columns of random orthonormal
matrices.

» 'Singular Value Initial'-the major left singular vectors of the
unfoldings of the tensors are used as initials.
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Comparison on Random Tensor

Objective Value on Random Tensor B Iterate Error on Random Tensor

objective value
logterate error)

number of iteration number of iteration
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Comparison on Stochastic Tensor

Obijective Value on Stochastic Tensor Iterate Error on Stochastic Tensor

&

References

logiterate error)

number of iteration number of iteration
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Orthogonal Low Rank Approximation Convergence Analysis of ADM
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Comparison on Cauchy Tensor

Objective Value on Cauchy Tensor

objective value

number of iteration

Itertate Error on Cauchy Tensor

References

logterate error)

number of iteration




Best Rank-1 Approximation Orthogonal Low Rank Approximation Convergence Analysis of ADM

000000000000
0000000000000

objective value

00000 00000
00000000000 000000
O00000e000

Comparison on Hilbert Tensor

Objective Value on Hilbert Tensor Iterate Error on Hilbert Tensor

References

i

log(terate error)

number of iteration number of iteration
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Orthogonal Low Rank Approximation

Comparison on Toeplitz Tensor

Objective Value on Toeplitz Tensor

number of iteration

log(iterate error)

Convergence Analysis of ADM

Iterate Error on Toeplitz Tensor

References

number of iteration
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Observations

Objective value:

» Obijective value satisfies the monotone increasing property
for each iteration;

» For different initial vectors, the approximated objective
values may be different for the same test tensor, that is,
iterates may converge to different limit points.

e It is interesting to study for what tensors or what initial
guesses Algorithm 6 converges to the global optimum
(Chen etc., 2008).
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Observations

Iterates error:
» lterates converge, but they are not monotone in each step.
» lterates converge but slower than that of objective values.
» When it comes to the qualities of the final approximation,
among four different initial vectors, no any one does offer
obvious advantage.
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Definition of ADM

Alternating Direction Methods

Fixing all but one variable a time and alternating among
the variables.
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General Form

Many algorithms can be cast in the abstract form

Xt = MR o
g(xk+1)7
wheref: U— Vandg:V — U.

Yk+1
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Background

Yk+1 :g(f(yk))7 k=0,1,.... (3)

» If g o fis a contraction map, then the Banach fixed-point
theorem asserts that the iterates from (3) converge to a
unique fixed-point point.

» If g o fis continuous and maps a convex compact set into
itself, then the Brouwer fixed-point theorem asserts that
there is a fixed-point y, such that g o f(y.) = ¥..
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General Form

For more complicated problems involving n variables

x(M_ ..., x(" a similar alternating iteration can be written in this
form

1 2) .3
x§(+)1 = f(”(xf(),xf(),...,xg(")),
2 1 3
XE(-‘Z'I = f(2)(x5(-21’x§( )’ te 7x5(n))’ k = 0, 17
' 1 2 1
XEQ1 = f(”)(xg(ﬁ1,x§(+)1,...,xf('ﬂr1 ).
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Our Work

» We propose a general framework that can be applied to
many types of alternating direction methods for proving
convergence.

» The conditions entailed by this framework are mild and

easy to satisfy, so the theory should be of fundamental
significance to many algorithms.
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Lemma

Let F : U — U be a continuous map over a closed subset
U c R". Suppose that the sequence {zx} generated by
iterative scheme zy 1 = F(zx) is well defined, bounded, and
has finitely many isolated accumulation points. Then

1. Either the sequence {zx} converges, or
2. There are disjoint neighborhoods of the accumulation
points such that, for k large enough, the consecutive

elements zy,zy 1, ... visit each neighborhood in a cyclic
order.
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Main Theory

Theorem

Suppose that an alternating optimization method can be cast in
the general form. Writez = (x("), ... x(") where x(©) ¢ U()
and UY) ¢ R" . Assume that

» a) The conditions in previous lemma are satisfied where
F(z) denotes the transition function of one complete sweep
of the alternating optimization, zx 1 = F(zx).
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Theorem

» b) Each ) representing the optimization mechanism in
the ¢-th direction is continuously differentiable and returns
the unique global minimizer xffL of the restricted objective
function

1 1 O+
hy(w) := h(xf(+)1,...,x5(+1 w,x{HD Xy,

» c) The objective function h(z) is second order continuously
differentiable.
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Theorem

» d) One of the accumulation points z;; of {zx} is a local
minimizer of h(z) at which the Hessian V2h(z}) is
symmetric and positive definite.

Then the sequence {z,} converge.
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Applications to Some Known Cases

The Gauss-Seidel method for solving a system of linear
equations.

The power method for finding the dominant eigenvector.

The alternating least squares method for computing the
QR decomposition.

The alternating projection method for finding structured low
rank matrices.

Best rank-one tensor approximation.
Tucker nearest problem.
Structured Kronecker approximation.
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Future Topics

v

High order SVD;

Quantum entanglement;

Orthogonal symmetric tensor diagonalization;
Segment CP approximation;

v

v

v

v

Segment Tucker approximation.
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Thank you very much!
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