Orthogonal Low Rank Approximation

Convergence 0 000000000 **Numerical Result**

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Convergence Analysis on Orthogonal Low Rank Approximation of Tensors

Guan Yu

UCLouvain

Feb 25, 2019 @ KU Louvain

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Tensor decomposition Tensor approximation Challenges and solution

Orthogonal Low Rank Approximation

Our Work Basics Algorithm Description

Convergence

Convergence of Objective Values Convergence of Iterates

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Tensor decomposition Tensor approximation Challenges and solution

Orthogonal Low Rank Approximation

Our Work Basics Algorithm Description

Convergence

Convergence of Objective Values Convergence of Iterates

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Tensor decomposition Tensor approximation Challenges and solution

Orthogonal Low Rank Approximation

Our Work Basics Algorithm Description

Convergence

Convergence of Objective Values Convergence of Iterates

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Tensor decomposition Tensor approximation Challenges and solution

Orthogonal Low Rank Approximation

Our Work Basics Algorithm Description

Convergence

Convergence of Objective Values Convergence of Iterates

0 00000 000 Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Tensor Notation

Tensor of order k:

$$T = [t_{i_1,\ldots,i_k}] \in \mathbb{R}^{l_1 \times l_2 \times \ldots \times l_k}$$

Tensor of rank 1:

$$\bigotimes_{i=1}^{k} \mathbf{u}^{(i)} = \mathbf{u}^{(1)} \circ \cdots \circ \mathbf{u}^{(k)} := \left[u_{i_1}^{(1)} \cdots u_{i_k}^{(k)} \right],$$

• $\mathbf{u}^{(j)} \in \mathbb{R}^{l_j}, j = 1, ..., k.$

Convergence

Numerical Result

Tensor decomposition: To rewrite the given tensor T as the summation of some rank-1 tensors.(NP-hard)

Tucker decomposition

$$T = \sum_{r_1, r_2, \dots, r_k} \lambda_{r_1, r_2, \dots, r_k} \mathbf{u}_{r_1}^{(1)} \circ \cdots \circ \mathbf{u}_{r_k}^{(k)},$$

where $\lambda_{r_1, r_2, ..., r_k} \in \mathbb{R}$ and $\mathbf{u}_{r_\ell}^{(\ell)} \in \mathbb{R}^{l_\ell}$ are unit vectors for $\ell = 1, ..., k$.

CP decomposition

$$T = \sum_{r} \lambda_{r} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(k)},$$

where $\lambda_r \in \mathbb{R}$ and $\mathbf{u}_r^{(\ell)} \in \mathbb{R}^{I_\ell}$ are unit vectors for $\ell = 1, \dots, k$.

Introduction ○ ●○○○○ Convergence

Numerical Result

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Tensor Approximation

Tensor approximation: To find another tensor \hat{T} with certain properties to minimize the error $||T - \hat{T}||_F$ for a given T

Low rank CP approximation: Determine unit vectors u^(ℓ)_r ∈ ℝ^{l_ℓ}, ℓ = 1,...k and scalars λ_r to minimize

$$\left\| T - \sum_{r=1}^{R} \lambda_r \mathbf{u}_r^{(1)} \circ \cdots \circ \mathbf{u}_r^{(k)} \right\|_F^2.$$
 (1)

0 00000 Orthogonal Low Rank Approximation

Convergence

Numerical Result

Low Rank CP Approximation

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへの

Orthogonal Low Rank Approximation
0
00000
00000
00000000000

Convergence

 I_1

7

 I_3

Numerical Result

 I_1

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Convergence 0 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Applications of CP Approximation

- psychometrics, chemometrics, neuroscience;
- data mining, multiple access wireless communication systems, blind signal separation, image identification;
- telecommunications, independent component analysis (ICA), sensor array processing
- polarization sensitive array analysis.

00000

Convergence 0 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Background of Algorithm

- damped Gauss-Newton (dGN) and a variant called PMF3;
- non-linear conjugate gradient approach, Levenberg-Marquardt method;
- Alternating Least Squares (ALS) algorithms, Alternating Slice-wise Diagonalization (ASD) and Self Weighted Alternating TriLinear Decomposition (SWATLD);
- Enhanced Line Search (ELS), Tikhonov regularization on the ALS.

Convergence 0 000000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Challenges and Ill-posedness

- Best low rank approximation of a matrix (k = 2) always exists. (Eckart-Young Theorem)
- The rank-1 approximation is theoretically guaranteed to have a global optimum.
- Best rank-R (R > 1) approximation for high-order tensors may not exist.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Example

Let $\mathbf{u}_1, \mathbf{v}_1 \in \mathbb{R}^{l_1}$, $\mathbf{u}_2, \mathbf{v}_2 \in \mathbb{R}^{l_2}$, and $\mathbf{u}_3, \mathbf{v}_3 \in \mathbb{R}^{l_3}$ be vectors such that each pair $\mathbf{u}_i, \mathbf{v}_i$ is linearly independent. Define tensor

$$\mathcal{T} := \mathsf{u}_1 \circ \mathsf{u}_2 \circ \mathsf{v}_3 + \mathsf{u}_1 \circ \mathsf{v}_2 \circ \mathsf{u}_3 + \mathsf{v}_1 \circ \mathsf{u}_2 \circ \mathsf{u}_3 \in \mathbb{R}^{l_1 imes l_2 imes l_3},$$

and for each $n \in \mathbb{N}$,

$$T_n := n\left(\mathbf{u}_1 + \frac{1}{n}\mathbf{v}_1\right) \circ \left(\mathbf{u}_2 + \frac{1}{n}\mathbf{v}_2\right) \circ \left(\mathbf{u}_3 + \frac{1}{n}\mathbf{v}_3\right) - n \mathbf{u}_1 \circ \mathbf{u}_2 \circ \mathbf{u}_3.$$

Then *T* has rank 3 and rank of T_n is at most 2. But $||T_n - T|| \rightarrow 0$ as $n \rightarrow \infty$. Therefore, *T* does not have a best rank-2 approximation.

Introduction
0
00000
000

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solution

 ▶ Orthogonality requirement ensures the existence.
 For i = 1,..., k and 1 ≤ r ≤ R, u_r⁽ⁱ⁾ are unit vectors.
 1. Complete orthogonality: For all i = 1,..., k,

$$\langle \mathbf{u}_{r_1}^{(i)}, \mathbf{u}_{r_2}^{(i)} \rangle = 0, \quad \forall 1 \leq r_1 \neq r_2 \leq R.$$

2. Semi-orthogonality: There is one *i* such that

$$\langle \mathbf{u}_{r_1}^{(i)}, \mathbf{u}_{r_2}^{(i)}
angle = \mathbf{0}, \quad \forall \mathbf{1} \leq r_1 \neq r_2 \leq \mathbf{R}.$$

3. μ -orthogonality: For some $1 \le i_1 < \cdots < i_{\mu} \le k$,

$$\left\langle \mathbf{u}_{r_1}^{(i_1)},\mathbf{u}_{r_2}^{(i_1)} \right\rangle = 0, \cdots, \left\langle \mathbf{u}_{r_1}^{(i_{\mu})},\mathbf{u}_{r_2}^{(i_{\mu})} \right\rangle = 0, \quad \forall 1 \leq r_1 \neq r_2 \leq R.$$

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Orthogonal Low Rank Approximation

- Given $T \in \mathbb{R}^{I_1 \times ... \times I_k}$, determine
 - unit vectors $\mathbf{u}_r^{(i)} \in \mathbb{R}^{l_i}, i = 1, \dots k$,
 - scalars $\lambda_r \in \mathbb{R}$,

such that

$$\left\| T - \sum_{r=1}^{R} \lambda_r \bigotimes_{\substack{i=1\\H_r}}^{k} \mathbf{u}_r^{(i)} \right\|_F^2,$$

is minimized subject to the mutual orthogonality condition that

$$\langle H_{r_1}, H_{r_2} \rangle = \prod_{i=1}^k \left\langle \mathbf{u}_{r_1}^{(i)}, \mathbf{u}_{r_2}^{(i)} \right\rangle = \delta_{r_1 r_2}, \quad \text{for all} \quad 1 \le r_1, r_2 \le R,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

Orthogonal Low Rank Approximation

Convergence

Numerical Result

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Our Problem

Orthogonal low rank approximation:

$$\begin{cases} \min \left\| T - \sum_{r=1}^{R} \lambda_r \bigotimes_{i=1}^{k} \mathbf{u}_r^{(i)} \right\|_F^2, \\ \text{subject to } \mu - \text{orthogonality constraint.} \end{cases}$$
(2)

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Open Question

- Complete orthogonal low rank approximation are studied in [1].
- Semi-orthogonal low rank approximation of tensors are studied in [2].
- It is interesting to impose orthogonality to more than one factor matrix.
 - [2] pointed that "More study is needed".
 - [2] addressed that "The question of more than one semi-orthogonal factor matrix, except for the case of complete orthogonality, remains open".

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Linear Mapping

Given a fixed partitioning $[\![k]\!] = \alpha \cup \beta$, we shall regard an order-*k* tensor $T \in \mathbb{R}^{l_1 \times \ldots \times l_k}$ as a "matrix representation" of a linear operator mapping order-*s* tensors to order-*t* tensors. Specifically, we identify *T* with the linear map

$$\mathscr{T}_{\boldsymbol{\beta}}: \mathbb{R}^{I_{\alpha_1} \times \ldots \times I_{\alpha_s}} \to \mathbb{R}^{I_{\beta_1} \times \ldots \times I_{\beta_t}},$$

such that for any $S \in \mathbb{R}^{I_{\alpha_1} \times ... \times I_{\alpha_s}}$,

Orthogonal Low Rank Approximation

Convergence

Numerical Result

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Linear Mapping

we have

$$\mathscr{T}_{oldsymbol{eta}}(oldsymbol{S}) \coloneqq T \circledast_{oldsymbol{eta}} oldsymbol{S} = [\langle t_{[:|\ell_1,...,\ell_t]}, oldsymbol{S}
angle] \in \mathbb{R}^{I_{eta_1} imes ... imes I_{eta_t}}$$

where

$$\langle t_{[:|\ell_1,\ldots,\ell_t]}, \boldsymbol{S} \rangle := \sum_{i_1=1}^{l_{\alpha_1}} \ldots \sum_{i_s=1}^{l_{\alpha_s}} t_{[i_1,\ldots,i_s|\ell_1,\ldots,\ell_t]} \boldsymbol{s}_{i_1,\ldots,i_s}$$

is the Frobenius inner product generalized to multi-dimensional arrays.

Convergence

An Equivalent Formulation

The optimal scales λ_r can also be interpreted as the length of the projection of the "vector" *T* onto the "unit vector" H_r under the Frobenius inner product,

$$\lambda_r = \left\langle T, \bigotimes_{i=1}^k \mathbf{u}_r^{(i)} \right\rangle = \left\langle T \circledast_\ell \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_r^{(i)} \circ \bigotimes_{i=\ell+1}^k \mathbf{u}_r^{(i)} \right), \mathbf{u}_r^{(\ell)} \right\rangle.$$
(3)

 The orthogonal low rank approximation problem (2) can be reformulated as

$$\begin{cases} \max \sum_{r=1}^{R} \lambda_r^2, \\ \text{subject to the } \mu - \text{orthogonality constraint.} \end{cases}$$
(4)

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Alternating Least Squares Algorithm

- For matrices (k = 2), the best low rank approximation is TSVD (Eckart-Young theorem).
- For general tensors (k > 2), the "workhorse" algorithm for orthogonal low rank approximation of tensor has been alternating least squares (ALS) method.
 - [2] proved convergence globally.
 - Numerical computation of the completely orthogonal in [1].

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Contribution

- We develop an SVD-based algorithm which updates two factors simultaneously.
- To address the orthogonality, we apply polar decomposition for μ factors.
- The convergence of our algorithm is analyzed for both objective function and iterates themselves.
- Numerical performance is demonstrated.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Algorithm Description

- How can we update $\mathbf{u}_r^{(\ell)}, \mathbf{u}_r^{(\ell+1)}$ to obtain "better" ones?
 - For any $1 \le \ell \le k \mu 1$ and $r = 1, 2, \dots, R$, let $\beta_{\ell} = (\ell, \ell + 1)$,

$$C_r^{(\ell)} = T \circledast_{\beta_\ell} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_r^{(i)} \circ \bigotimes_{i=\ell+2}^k \mathbf{u}_r^{(i)} \right).$$

- $\tilde{\mathbf{u}}_{r}^{(\ell)}$ and $\tilde{\mathbf{u}}_{r}^{(\ell+1)}$ be the dominant left and right singular vectors of $C_{r}^{(\ell)}$.
- By Eckart-Young theorem, update $\mathbf{u}_r^{(\ell)}$ by $\tilde{\mathbf{u}}_r^{(\ell)}$ and $\mathbf{u}_r^{(\ell+1)}$ by $\tilde{\mathbf{u}}_r^{(\ell+1)}$.

duction	Orthogonal Low Rank Approximation
	00
00	00000
	00000000

Convergence 0 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- The update of first $k \mu$ factors has been provided.
- To address the orthogonality constraint, how to update u^(ℓ)_r for k − µ + 1 ≤ ℓ ≤ k?
 - Check the optimality condition to ensure the monotone of the objective value.

Orthogonal Low Rank Approximation

Ĺ

Convergence

Numerical Result

Lagrangian

The Lagrangian for the optimization problem (4) (i.e., (2)) is

$$:= \sum_{r=1}^{R} \lambda_{r}^{2} - \sum_{\ell=1}^{k} \sum_{r=1}^{R} \rho_{r}^{(\ell)} \left(\left\langle \mathbf{u}_{r}^{(\ell)}, \, \mathbf{u}_{r}^{(\ell)} \right\rangle - 1 \right) \\ - \sum_{1 \le r_{1} < r_{2} \le R} \sum_{i=k-\mu+1}^{k} \alpha_{r_{1}r_{2}}^{(\ell)} \left\langle \mathbf{u}_{r_{1}}^{(\ell)}, \, \mathbf{u}_{r_{2}}^{(\ell)} \right\rangle,$$

where λ_r is given by (3) and $\rho_r^{(\ell)}$, $\alpha_{r_1r_2}^{(\ell)}$ are Lagrange multipliers.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Optimality Condition

The first order optimality condition for a stationary point is to satisfy for r = 1, ..., R,

$$\lambda_r T \circledast_{\ell} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_r^{(i)} \circ \bigotimes_{i=\ell+1}^k \mathbf{u}_r^{(i)} \right) = \rho_r^{(\ell)} \mathbf{u}_r^{(\ell)}, \ell = 1, \dots, k - \mu_r$$

and

$$\lambda_r \mathcal{T}_{\mathfrak{B}_{\ell}} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_r^{(\ell)} \circ \bigotimes_{i=\ell+1}^k \mathbf{u}_r^{(i)} \right) = \rho_r^{(\ell)} \mathbf{u}_r^{(\ell)} + \sum_{r_1 < r} \frac{\alpha_{r_1 r}^{(\ell)}}{2} \mathbf{u}_{r_1}^{(\ell)} + \sum_{r < r_2} \frac{\alpha_{rr_2}^{(\ell)}}{2} \mathbf{u}_{r_2}^{(\ell)}$$
$$\ell = k - \mu + 1, \dots, k.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Orthogonal Low Rank Approximation

Convergence

Numerical Result

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

It follows from the orthogonality condition that

 $V^{(\ell)}\Lambda^{(\ell)} = U^{(\ell)}S^{(\ell)}, S^{(\ell)}$ is symmetric, $\ell = k - \mu + 1, \cdots, k,$

where

$$\mathbf{v}_{r}^{(\ell)} = \mathcal{T}_{\circledast_{\ell}} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_{r}^{(\ell)} \otimes \bigotimes_{i=\ell+1}^{k} \mathbf{u}_{r}^{(i)} \right), \quad \ell = 1, \dots, k-\mu+1, r = 1, \dots, R,$$
$$V^{(\ell)} = \left[\mathbf{v}_{1}^{(\ell)}, \cdots, \mathbf{v}_{R}^{(\ell)} \right], \quad U^{(\ell)} = \left[\mathbf{u}_{1}^{(\ell)}, \cdots, \mathbf{u}_{R}^{(\ell)} \right],$$
$$\Lambda^{(\ell)} = \left[\begin{array}{c} \lambda_{1}^{(\ell)} & \\ & \ddots \\ & & \lambda_{R}^{(\ell)} \end{array} \right].$$

Orthogonal Low Rank Approximation

Convergence 0 000000000 **Numerical Result**

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Trace Maximizing Property

Lemma

Let matrix $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ have polar decomposition

A = QS,

where $Q \in \mathbb{R}^{m \times n}$ is the column orthogonal polar factor and $S \in \mathbb{R}^{n \times n}$ is the symmetric positive semi-definite factor. Then

$$Q = \arg \max_{P \in \mathbb{R}^{m \times n}, P^T P = I} \operatorname{Trace} \left(P^T A \right).$$

Moreover, if A is of full column rank, then Q above is unique.

ntroduction	Ortho	
)	00	
00000	0000	
000	0000	

Convergence

Numerical Result

- Update U^(ℓ) by Ũ^(ℓ) which is from the orthogonal polar factor of the matrix V^(ℓ)Λ^(ℓ) for ℓ = k − μ + 1,...,k.
 - Let the polar decomposition of $V^{(\ell)} \Lambda^{(\ell)}$ be

$$V^{(\ell)} \Lambda^{(\ell)} = \tilde{U}^{(\ell)} \tilde{S}^{(\ell)},$$

where $\tilde{U}^{(\ell)}$ is column orthogonal and $\tilde{S}^{(\ell)}$ is symmetric and positive semi-definite.

$$\begin{split} \tilde{\lambda}_r^{(\ell)} &= \left\langle \mathbf{v}_r^{(\ell)}, \ \tilde{\mathbf{u}}_r^{(\ell)} \right\rangle, \quad \ell = 1, \dots, k - \mu + 1, \quad r = 1, \dots, R. \\ \lambda_r^{(\ell)} &= \left\langle \mathbf{v}_r^{(\ell)}, \ \mathbf{u}_r^{(\ell)} \right\rangle, \quad \ell = 1, \dots, k - \mu + 1, \quad r = 1, \dots, R. \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Orthogonal Low Rank Approximation

Convergence

Numerical Result

By trace maximizing property,

$$\sum_{r=1}^{R} (\lambda_r^{(\ell)})^2 = \operatorname{Trace} \left((U^{(\ell)})^T V^{(\ell)} \Lambda^{(\ell)} \right)$$

$$\leq \operatorname{Trace}\left((\tilde{U}^{(\ell)})^T V^{(\ell)} \Lambda^{(\ell)} \right) = \sum_{r=1}^{R} \tilde{\lambda}_r^{(\ell)} \lambda_r^{(\ell)}.$$

By Cauchy-Schwarz inequality,

$$\sum_{r=1}^{R} (\lambda_r^{(\ell)})^2 \leq \sum_{r=1}^{R} (\tilde{\lambda}_r^{(\ell)})^2, \quad \ell = 1, \dots, k - \mu + 1,$$

and the equality holds if and only if

$$\lambda_r^{(\ell)} = \tilde{\lambda}_r^{(\ell)}, \quad \ell = 1, \dots, k - \mu + 1, \quad r = 1, \dots, R.$$

Orthogonal Low Rank Approximation Numerical Result 0000000000 **Require:** Starting unit vectors $\mathbf{u}_{r,0}^{(\ell)} \in \mathbb{R}^{I_{\ell}}$ and $\mathbf{u}_{i,0}^{(\ell)} \perp \mathbf{u}_{i,0}^{(\ell)}$ for $\ell = k - \mu + 1, \cdots, k$ $\tau := k - \mu - 1$ if $k - \mu$ is odd then $\tau := k - \mu - 2$ end if for p = 0, 1, ..., dofor $\ell = 1, 3, \cdots, \tau$ do $\beta_{\ell} = (\ell, \ell+1)$ do for r = 1, 2, ..., R, $C_{r,[p+1]}^{(\ell)} = T \circledast_{\beta_{\ell}} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_{r,[p+1]}^{(l)} \circ \bigotimes_{i=\ell+2}^{k} \mathbf{u}_{r,[p]}^{(l)} \right) \{ \text{A matrix of size } I_{\ell} \times I_{\ell+1} \}$ $[\mathbf{u}, \mathbf{s}, \mathbf{v}] = \text{svds}(C_{c, [p+1]}^{(\ell)}, 1)$ {Dominant singular value triplet via Matlab routine svds;assume uniqueness} if $\mathbf{u}_1 < 0$ then u = -u, v = -vend if $\mathbf{u}_{r,[p+1]}^{(\ell)} := \mathbf{u}$ $\mathbf{u}_{r,[p+1]}^{(\ell+1)} := \mathbf{v} \{ \text{if } k - \mu \text{ is even, use } \hat{\mathbf{u}}_{r,[p+1]}^{(k-\mu-2)} := \mathbf{v} \}$ $\lambda_{r,[p+1]}^{(\ell)} := \mathbf{s}, \quad \lambda_{r,[p+1]}^{(\ell+1)} := \mathbf{s} \{ \text{if } \mathbf{k} - \mu \text{ is odd, use } \hat{\lambda}_{r,[p+1]}^{(k-\mu-2)} := \mathbf{s} \}$

end for end for

Orthogonal Low Rank Approximation

Convergence

Numerical Result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

for
$$\ell = k - \mu + 1, \dots, k$$
 do
for $r = 1, 2, \dots, R$, do
 $\mathbf{v}_{r,[p+1]}^{(\ell)} = T \circledast_{\ell} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_{r,[p+1]}^{(i)} \circ \bigotimes_{i=\ell+1}^{k} \mathbf{u}_{r,[p]}^{(i)} \right)$ {define columns of $V_{[p+1]}^{(\ell)}$ }
 $\hat{\lambda}_{r,[p+1]}^{(\ell)} := \langle \mathbf{v}_{r,[p+1]}^{(\ell)}, \mathbf{u}_{r,[p]}^{(\ell)} \rangle$ {define diagonals of $\Lambda_{[p+1]}^{(\ell)}$ }
end for
 $[U_{[p+1]}^{(\ell)}, S_{[p+1]}^{(\ell)}] = \text{poldec}(V_{[p+1]}^{(\ell)} \Lambda_{[p+1]}^{(\ell)})$
for $r = 1, 2, \dots, R$, do
 $\mathbf{u}_{r,[p+1]}^{(\ell)} := U_{[p+1]}^{(\ell)}(:, r)$
 $\lambda_{r,[p+1]}^{(\ell)} := S_{[p+1]}^{(\ell)}(r, r)(= \langle \mathbf{v}_{r,[p+1]}^{(\ell)}, \mathbf{u}_{r,[p+1]}^{(\ell)} \rangle)$
end for
end for
end for

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Convergence of Objective Values

- As SVD is involved for the first k μ factors, the generalized Rayleigh quotients are bounded and monotone increasing.
- Polar decomposition is applied for last µ factors, by trace maximizing property.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma

Assume that a^* is an isolated accumulation point of a sequence $\{a_k\}$ such that for every subsequence $\{a_{k_j}\}$ converging to a^* , there is an infinite subsequence $\{a_{k_{j_i}}\}$ such that $|a_{k_{j_i}+1} - a_{k_{j_i}}| \to 0$. Then the whole sequence $\{a_k\}$ converges to a^* .

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Accumulation Points

For r = 1, ..., R, $\begin{cases}
T \circledast_{\ell} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_{r}^{(i)} \circ \bigotimes_{i=\ell+1}^{k} \mathbf{u}_{r}^{(i)} \right) = \left\langle T, \bigotimes_{i=1}^{k} \mathbf{u}_{r}^{(i)} \right\rangle \mathbf{u}_{r}^{(\ell)}, \\
\ell = 1, ..., k - \mu, \\
T \circledast_{\ell} \left(\bigotimes_{i=1}^{\ell-1} \mathbf{u}_{r}^{(i)} \circ \bigotimes_{i=\ell+1}^{k} \mathbf{u}_{r}^{(i)} \right) \\
= \sum_{t=1}^{R} \left\langle T, \bigotimes_{i=1}^{\ell-1} \mathbf{u}_{r}^{(i)} \circ \mathbf{u}_{t}^{(\ell)} \circ \bigotimes_{i=\ell+1}^{k} \mathbf{u}_{r}^{(i)} \right\rangle \mathbf{u}_{t}^{(\ell)}, \quad \ell = k - \mu + 1, \cdots, k.
\end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Isolation

Lemma

For almost all tensors $T \in \mathbb{R}^{l_1 \times \cdots \times l_k}$, the accumulation points of any sequence generated by Algorithm 1 are necessarily isolated.

- A polynomial system with leading coefficients from entries of *T*.
- By the theory of parameter continuation.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Assumption A

We say that a given tensor $T \in \mathbb{R}^{l_1 \times \cdots \times l_k}$ satisfies Assumption A if for every convergent subsequence $\left\{ \mathbf{u}_{r,[p_j]}^{(\ell)} \right\}$ generated by Algorithm 1, the dominant singular value of the limiting point $C_r^{(\ell)}$ of the corresponding subsequence $\left\{ C_{r,[p_j]}^{(\ell)} \right\}$ are simple for all $\ell = 1, \ldots, k - \mu, r = 1, \ldots, R$. Moreover, the limiting point $V^{(\ell)} \Lambda^{(\ell)}$ of the matrix $V_{[p_j]}^{(\ell)} \Lambda_{[p_j]}^{(\ell)}$ for $\ell = k - \mu + 1, \cdots, k$ are of full column rank.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Lemma

For all $\ell = 1, ..., k$, r = 1, ..., R, if subsequences $\left\{ \mathbf{u}_{r,[p_j]}^{(\ell)} \right\}$ generated by Algorithm 1 converge simultaneously, then subsequences $\left\{ \mathbf{u}_{r,[p_j+1]}^{(\ell)} \right\}$ also converge simultaneously. Furthermore, under Assumption A, $\left\{ \mathbf{u}_{r,[p_j]}^{(\ell)} \right\}$ and $\left\{ \mathbf{u}_{r,[p_j+1]}^{(\ell)} \right\}$ converge to the same limiting point.

- Subsequence $\left\{C_{r,[\rho_j+1]}^{(\ell)}\right\}$ and $\left\{\mathbf{u}_{r,[\rho_j+1]}^{(\ell)}\right\}$ converge.
- Converge to the same limiting point

Orthogonal Low Rank Approximation	C
00	C
00000	C
000000000	

Convergence

Numerical Result

Taking limit,

Introduction

$$\begin{split} \lambda_{r} &= \langle \mathbf{u}_{r}^{(1)}, \ \tilde{C}_{r}^{(1)} \mathbf{u}_{r}^{(2)} \rangle \\ &\leq \quad \tilde{\lambda}_{r}^{(1)} &= \langle \tilde{\mathbf{u}}_{r}^{(1)}, \ \tilde{C}_{r}^{(1)} \tilde{\mathbf{u}}_{r}^{(2)} \rangle = \langle \mathbf{u}_{r}^{(3)}, \ \tilde{C}_{r}^{(3)} \mathbf{u}_{r}^{(4)} \rangle = \tilde{\lambda}_{r}^{(2)} \\ &\leq \quad \tilde{\lambda}_{r}^{(3)} &= \langle \tilde{\mathbf{u}}_{r}^{(3)}, \ \tilde{C}_{r}^{(3)} \tilde{\mathbf{u}}_{r}^{(4)} \rangle = \langle \mathbf{u}_{r}^{(5)}, \ \tilde{C}_{r}^{(5)} \mathbf{u}_{r}^{(6)} \rangle = \tilde{\lambda}_{r}^{(4)} \\ &\leq \quad \cdots \\ &\leq \quad \tilde{\lambda}_{r}^{(\ell)} &= \langle \tilde{\mathbf{u}}_{r}^{(\ell)}, \ \tilde{C}_{r}^{(\ell)} \tilde{\mathbf{u}}_{r}^{(\ell+1)} \rangle = \langle \mathbf{u}_{r}^{(\ell+2)}, \ \tilde{C}_{r}^{(\ell+2)} \mathbf{u}_{r}^{(\ell+3)} \rangle = \tilde{\lambda}_{r}^{(\ell+1)} \\ &\leq \quad \cdots \\ &\leq \quad \left\{ \begin{array}{c} \tilde{\lambda}_{r}^{(k-\mu-3)} &= \langle \tilde{\mathbf{u}}_{r}^{(k-\mu-3)}, \ \tilde{C}_{r}^{(k-\mu-3)} \tilde{\mathbf{u}}_{r}^{(k-\mu-2)} \rangle \\ &= \langle \mathbf{u}_{r}^{(k-\mu-1)}, \ \tilde{C}_{r}^{(k-\mu-1)} \mathbf{u}_{r}^{(k-\mu)} \rangle = \tilde{\lambda}_{r}^{(k-\mu-2)} \\ \tilde{\lambda}_{r}^{(k-\mu-1)} &= \langle \tilde{\mathbf{u}}_{r}^{(k-\mu-1)}, \ \tilde{C}_{r}^{(k-\mu-1)} \mathbf{u}_{r}^{(k-\mu)} \rangle = \tilde{\lambda}_{r}^{(k-\mu-1)} \\ &= \langle \hat{\mathbf{u}}_{r}^{(k-\mu-1)}, \ \tilde{C}_{r}^{(k-\mu-1)} \mathbf{u}_{r}^{(k-\mu)} \rangle = \tilde{\lambda}_{r}^{(k-\mu-1)} \\ \leq \quad \tilde{\lambda}_{r}^{(k-\mu-1)} &= \langle \tilde{\mathbf{u}}_{r}^{(k-\mu-1)}, \ \tilde{C}_{r}^{(k-\mu-1)} \tilde{\mathbf{u}}_{r}^{(k-\mu)} \rangle = \tilde{\lambda}_{r}^{(k-\mu)}. \end{array} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Orthogonal Low Rank Approximation
00
00000
000000000

Convergence

Numerical Result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

For $r = 1, \ldots, R$, we obtain

$$\begin{cases} \lambda_r = \tilde{\lambda}_r^{(1)} = \dots = \tilde{\lambda}_r^{(k-\mu-1)} = \tilde{\lambda}_r^{(k-\mu)}, & \text{if } k - \mu \text{ is even} \\ \lambda_r = \tilde{\lambda}_r^{(1)} = \dots = \tilde{\lambda}_r^{(k-\mu-1)} = \hat{\lambda}_r^{(k-\mu-1)} = \tilde{\lambda}_r^{(k-\mu)}, & \text{if } k - \mu \text{ is odd} \end{cases}$$

Monotone increasing of objective value.

$$\blacktriangleright \sum_{r=1}^{R} (\lambda_r)^2 = \sum_{r=1}^{R} (\tilde{\lambda}_r)^2.$$

Convergence

Numerical Result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\begin{aligned} \mathbf{u}_{r}^{(\ell)} &= \tilde{\mathbf{u}}_{r}^{(\ell)} \text{ hold for } \ell = 1, \dots, k - \mu, r = 1, \dots, R. \\ \\ \tilde{V}^{(\ell)} &= \lim V_{[p_{j}+1]}^{(\ell)} = \lim V_{[p_{j}]}^{(\ell)} = V^{(\ell)}, \\ \\ \\ \tilde{\Lambda}^{(\ell)} &= \lim \Lambda_{[p_{j}+1]}^{(\ell)} = \lim \Lambda_{[p_{j}]}^{(\ell)} = \Lambda^{(\ell)}, \end{aligned}$$

For $\ell = k - \mu + 1, \dots, k$, combined with Assumption A.

$$ilde{U}^{(\ell)} = \lim U^{(\ell)}_{[p_j+1]} = \lim U^{(\ell)}_{[p_j]} = U^{(\ell)}$$

Introduction
0
000

Convergence

Theorem

For almost all tensors T satisfying Assumption A, the sequence $\left\{\mathbf{u}_{r,[p]}^{(\ell)}\right\}$ generated in Algorithm 1 converges for $\ell = 1, \cdots, k$, $r = 1, \cdots, R$.

- Accumulation points are isolated.
- If subsequences \$\left\{\mu_{r,[\mu_j]}^{(\ell)}\right\}\$ generated by Algorithm 1 converge simultaneously, then subsequences \$\left\{\mu_{r,[\mu_j+1]}^{(\ell)}\right\}\$ also converge simultaneously.
- ► Under Assumption A, {u^(ℓ)_{r,[p_j]}} and {u^(ℓ)_{r,[p_j+1]}} converge to the same limiting point.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical Example

Test Algorithm 1

- µ = 2 and R = 5;
- First 150 steps.

Comparison: by measuring

- objective value $\sum_{r=1}^{R} \lambda_r^2$;
- iterate error $\sum_{\ell=1}^{k} \sum_{r=1}^{R} \|\mathbf{u}_{r,[\rho+1]}^{(\ell)} \mathbf{u}_{r,[\rho]}^{(\ell)}\|_{2}^{2}$.

Introduction	
0	
00000	

Convergence 0 000000000

Test tensors $R^{20 \times 16 \times 10 \times 32}$:

- Random tensor: randomly generate.
- Tensor1: randomly generate a rank-5 order-4 tensor, add a noise tensor which is generated by 10⁻⁴ * randn(20, 16, 10, 32).
- Tensor2: randomly generate a rank-5 order-4 tensor, add a noise tensor which is generated by 10⁻² * randn(20, 16, 10, 32).
- Stochastic tensor:

 $t_{i_1,i_2,i_3,i_4} = \begin{cases} c & i_1 \neq i_2, i_2 \neq i_3, i_3 \neq i_4 \\ 0 & i_1 = i_2, i_2 \neq i_3, i_3 \neq i_4 \\ 1/20 & \text{otherwise} \end{cases}$, where *c* is

randomly in (0, 1) by the homogenous distribution such as $\sum_{i_1 \in [\![20]\!]} t_{i_1,i_2,i_3,i_4} = 1$ with $i_j \neq i_{j+1}, j = 1, 2, 3$.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Cauchy tensor: $t_{i_1,i_2,i_3,i_4} = \frac{1}{c(i_1)+c(i_2)+c(i_3)+c(i_4)}$, where *c* is a random vector with size 32.
- Hilbert tensor: $t_{i_1,i_2,i_3,i_4} = \frac{1}{i_1+i_2+i_3+i_4-3}$.
- ► Toeplitz tensor: $t_{i_1+j,i_2+j,i_3+j,i_4+j} = t_{i_1,i_2,i_3,i_4}$ for $j \in [[min(20 i_1, 16 i_2, 10 i_3, 32 i_4)]].$

ntroduction	Orthogonal Low Rank Approximation	Convergence	Numerical Resul
))00000)000	00 00000 000000000	0 00000000	

Initial vectors:

- ▶ 'Random Initial'-unit vectors u^(ℓ)_r for ℓ = 1,..., k and r = 1,..., R are generated randomly to satisfy orthogonality constrain with μ = 2.
- Identity Initial'-each [u₁^(ℓ),..., u_R^(ℓ)] for ℓ = 1,..., k are taken as the first R columns of identity matrices.
- 'Orthogonal Initial'–each [u₁^(ℓ),..., u_R^(ℓ)] for ℓ = 1,..., k are taken as the first *R* columns of random orthonormal matrices.
- 'Singular Value Initial'-the major left singular vectors of the unfoldings of the tensors are used as initials.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Comparison on Random Tensor

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Comparison on Stochastic Tensor

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Comparison on Cauchy Tensor

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Intro	du	cti	on	
0				
000	00			

Convergence

Numerical Result

Comparison on Tensor1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Intro	du	cti	on
0			
000	00		

Convergence

Numerical Result

Comparison on Tensor2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ < ○

Introduction
00000
000

Convergence

Numerical Result

Comparison on Hilbert Tensor

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Orthogonal Low Rank Approximation

Convergence

Numerical Result

Comparison on Toeplitz Tensor

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction
0
00000
000

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Observation

Objective value:

- Objective value satisfies the monotone increasing property for each iteration;
- Algorithm 1 is more effective on structured tensor than random tensor;
- For different initial vectors, the objective values may be different for the same test tensor, that is, iterates may converge to different limit points.
 - It is interesting to study for what tensors or what initial guesses Algorithm 1 converges to the global optimum [1].

Introduction
0
00000
000

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Observation

Iterates error:

- Iterates converge, but they are not monotone in each step.
- Iterates converge but slower than that of objective values.
- When it comes to the qualities of the final approximation, among 4 different initial vectors, no any one does offer obvious advantage.

Introduction	n
0	
00000	

Convergence

Numerical Result

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

- An SVD-based algorithm has been presented including
 - Completely orthogonal low rank approximation [1].
 - Semi-orthogonal low rank approximation [2].
- The convergence of the proposed algorithm has been analyzed.
- Numerical examples have been provided to illustrate the convergence behavior of proposed algorithm.

Orthogonal Low Rank Approximation

Convergence

Numerical Result

(ロ) (同) (三) (三) (三) (○) (○)

Reference

[1] J. CHEN AND Y. SAAD, On the tensor SVD and the optimal low rank orthogonal approximation of tensors, SIAM J. Matrix Anal. Appl., 30 (2008/09), pp. 1709–1734.
[2] L. WANG, M. T. CHU AND B. YU, Orthogonal low rank tensor approximation: Alternating least squares method and its global convergence, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1058–1072.

0 00000 000 Orthogonal Low Rank Approximation

Convergence

Numerical Result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you!