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What is a tensor

Figure : x e R,x € R* X € R**5 X ¢ R4*5x3
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Figure : Column, row, and tube fibers of a order-3 tensor
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Multiway Data

Psychometrics: individual x variable x time

Time-series analysis: time x variable x lag

Neuroscience: electrodes x time x frequency

Social networks: users x keywords x time

Facial image: people x view x illumination x expression x
pixels

Atmospheric science: location x variable x time x
observation
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Other Examples

v

Image Inpainting
Video Inpainting

v

» Link Prediction
» EEG Data
>
BRAIN EEG SPARSE 3D TENSOR
FORMAT
e — —_—

11/31



Motivating Examples

Why some data is missing
» API restriction
» Error occurs when collecting the data
» Access restriction
» Sampling method
» Some of the data does not exist
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Kronecker Product.

The Kronecker product of vectors u = [u,] € R" and
v = [v/] € R% results in a vector u ® v € R'% defined as
uv
u-v
UV =
u,v

1

Khatri-Rao Product.

The Khatri-Rao product U ® V of two matrices
U= [U&r] c RHXR and V = [Vf,r] c RI2><H is

UoV=[u1®Vys,...,up®V.R]
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Tensor matricization.

Let 7
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Figure : Unfolding Image
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CP Decomposition

S u®
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The CANDECOMP/PARAFAC(CP) model represents a tensor
as a sum of rank-one tensors

R
T=>uVo-oul = U0, U¥]
r=1
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Low Rank Tensor Completion (LRTC)

For a given tensor 7 € R"**k we want to find a low rank
tensor Z by solving the following optimization problem

k
. 1
min EHPQ(T—Z)H%JFZNHZ(/)H*

i=1

where Pq is the projection operator that only retains those
entries of the tensor that lie in the set Q2.
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Low Rank Tensor Completion (LRTC)

For a given tensor 7 € R"**k we want to find a low rank
tensor Z by solving the following optimization problem

k
1 Y MO
min S [Pa(T = 2)I[F + > 5 {IUVNE + [(UD)*7 17}

i=1

where Pq, is the projection operator that only retains those
entries of the tensor that lie in the set Q.
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Auxiliary Similarity

Numerical Result

similarity matrix

similarity matrix

similarity matrix
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Our LRTC Model
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CP-based Tensor Completion
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Algorithm 1 Altmin for solving LRTC

Initialization: U{", ..., U{¥

1: forp=0,...,kdo

2. fori=1.... kdo

3: Uy, = argmint(USY,, ..., USTD, U0, U5, Ug9)
;

> p+1 0
end for
end for
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Compared with other algorithms, alternating minimization has
several advantages for LRTC problem:

» It is easy to implement as there is no need to tune
optimization parameters like step sizes.

» It converges very fast in practice.

» The objective function f is not convex with respect to
variables UM, ..., UK together while the subproblem is
easy to solve as it has a closed-form solution.

» Obviously, the objective function f is monotone decreasing.
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Theorem

The iterates {U“), ey U,(Jk)} generated by Algorithm 1 from any
initialization converges globally to a critical point of f.

Proof.

v

fis a Kk function with 6 € [1/2,1)

Each subproblem is strongly convex.

Notice f is coercive and real analytic, it is guaranteed to
produce a bounded sequence.

fis a C* function, thus Vf is Lipschitz continuous on any
bounded subset of domain.

v

v

v
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Numerical Example

» Model advantage

e Our model
¢ Model without graph regularizer
o Model without any regularizer

» Effectiveness of the proposed methods
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» CPU time

» Reconstruction error (RE)= 7= [[U“')' UH Ollle , Where T is
the ground truth.

» Root mean squared error
(RMSE)= ”Pﬂc(T_H‘g;i’Wz V0Dl , Where Pqc denotes the
unobserved projection and |Pqc| is the number in Pqc set.
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Synthetic Data

» Randomly generate U() ¢ R100x10

» generate the graph Laplacian matrix Lap(U()) ¢ R100x100
of UM
> Lap(UM)) = VAVT by SVD

T can be generated as follows

Ty = VA2UO (LB o UB)T,
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SR=1% SR=5%
Method GM WGM NM GM WGM NM
Altmin-CG 02342 04395 0.4006%10 | 0.6611%107% 0.6356*10~3  0.1098%10~!
Altmin-ADMM  0.2484 03644  0.1492%10% | 0.6553*107%  0.6375%10~%  0.1095%10~!
TABLE 6.3
RE of the three models: GM 1 (with graph Laplacian), WGM (without graph Laplacian), NM (no regularizer).
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Flow Injection Analysis

Rank-deficient spectral FIA dataset

The represented tensor is of size
12(substances) x 100(wavelengths) x 89(reactiontimes).

For 12 chemical substances, we build the similarity
between two substances as the inverse of Euclidean
distance between their feature vectors.

For wavelengths and reaction times, the similar matrices
are tridiagonal.
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SR=1% SR=5% SR=10%
Method GM WGM NM GM WGM NM GM WGM NM

Alt-CG 0.6469 0.8795 8.2624
Alt-ADMM 05752 0.7678 1.5776

0.0220  0.0326  3.9585
0.0113 00113 0.1107

0.0135  0.0166 0.6746
0.0140  0.0171  0.0380

TABLE 6.5

RE of the three models: GM 1 (with graph Laplacian), WGM (without graph Laplacian), NM (no regularizer).
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RMSE

RMSE

Motivating Examples
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Conclusion

Low-rank tensor completion problem (LRTC) is to find a
tensor with the minimum rank, which subjects to the
equality constraints given by the observations.

Graph Laplacian regularizer can help to improve the
recovery quality when the missing ratio is high.
Alternating minimization method is efficient to solve the
LRTC problem.

Our model achieve comparable error rates, while being
significantly scalable.

29/31



Numerical Result

Reference

[1] SONG, QINGQUAN AND GE, HANCHENG AND CAVERLEE,
JAMES AND Hu, XIA, Tensor completion algorithms in big data
analytics, ACM Transactions on Knowledge Discovery from
Data (TKDD), 13(1) (2019).

30/31



Introduction Motivating Examples Model Numerical Result

Questions?

Thank you!
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