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What is a tensor

Figure : x ∈ R,x ∈ R4,X ∈ R4×5,X ∈ R4×5×3
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Figure : Column, row, and tube fibers of a order-3 tensor
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Multiway Data

I Psychometrics: individual × variable × time
I Time-series analysis: time × variable × lag
I Neuroscience: electrodes × time × frequency
I Social networks: users × keywords × time
I Facial image: people × view × illumination × expression ×

pixels
I Atmospheric science: location × variable × time ×

observation
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Recommender System
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Movie Rating
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Spatio-Temporal Data
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Hashtags
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Other Examples

I Image Inpainting
I Video Inpainting
I Link Prediction
I EEG Data
I ...
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Why some data is missing
I API restriction
I Error occurs when collecting the data
I Access restriction
I Sampling method
I Some of the data does not exist
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Kronecker Product.

The Kronecker product of vectors u = [ur ] ∈ RI1 and
v = [vr ] ∈ RI2 results in a vector u⊗ v ∈ RI1I2 defined as

u⊗ v =


u1v
u2v

...
uI1v

 .

Khatri-Rao Product.

The Khatri-Rao product U � V of two matrices
U = [u`,r ] ∈ RI1×R and V = [v`,r ] ∈ RI2×R is

U � V = [u:,1 ⊗ v:,1, . . . ,u:,R ⊗ v:,R]
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Tensor matricization.

Let T ∈ RI1×I2×...×Ik is a k -th order tensor, the unfolded matrix is

T(`) ∈ RI`×(I1...I`−1I`+1...Ik )

Figure : Unfolding Image
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CP Decomposition

The CANDECOMP/PARAFAC(CP) model represents a tensor
as a sum of rank-one tensors

T =
R∑

r=1

u(1)
r ◦ · · · ◦ u(k)

r = JU(1), . . . ,U(k)K
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Low Rank Tensor Completion (LRTC)

For a given tensor T ∈ RI1×...×Ik , we want to find a low rank
tensor Z by solving the following optimization problem

min
Z

1
2
‖PΩ(T − Z)‖2F +

k∑
i=1

λi‖Z(i)‖∗

where PΩ is the projection operator that only retains those
entries of the tensor that lie in the set Ω.
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Low Rank Tensor Completion (LRTC)

For a given tensor T ∈ RI1×...×Ik , we want to find a low rank
tensor Z by solving the following optimization problem

min
Z

1
2
‖PΩ(T − Z)‖2F +

k∑
i=1

λi

2
{‖U(i)‖2F + ‖(U(j))�j 6=i‖2F}

where PΩ is the projection operator that only retains those
entries of the tensor that lie in the set Ω.
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Auxiliary Similarity
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Our LRTC Model
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Algorithm 1 Altmin for solving LRTC

Initialization: U(1)
0 , . . . ,U(k)

0
1: for p = 0, . . . , k do
2: for i = 1 . . . , k do
3: U(i)

p+1 = argminf (U(1)
p+1, . . . ,U

(i−1)
p+1 ,U(i),U(i+1)

p , . . . ,U(k)
p )

4: end for
5: end for
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Compared with other algorithms, alternating minimization has
several advantages for LRTC problem:

I It is easy to implement as there is no need to tune
optimization parameters like step sizes.

I It converges very fast in practice.
I The objective function f is not convex with respect to

variables U(1), . . . ,U(k) together while the subproblem is
easy to solve as it has a closed-form solution.

I Obviously, the objective function f is monotone decreasing.
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Theorem

The iterates {U(1)
p , . . . ,U(k)

p } generated by Algorithm 1 from any
initialization converges globally to a critical point of f .

Proof.

I f is a KŁ function with θ ∈ [1/2,1)

I Each subproblem is strongly convex.
I Notice f is coercive and real analytic, it is guaranteed to

produce a bounded sequence.
I f is a C∞ function, thus ∇f is Lipschitz continuous on any

bounded subset of domain.
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Numerical Example

I Model advantage
• Our model
• Model without graph regularizer
• Model without any regularizer

I Effectiveness of the proposed methods
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I CPU time
I Reconstruction error (RE)= ‖T −JU(1),U(2),U(3)K‖F

‖T ‖F
, where T is

the ground truth.
I Root mean squared error

(RMSE)= ‖PΩc (T −JU(1),U(2),U(3)K)‖F
|PΩc |1/2 , where PΩc denotes the

unobserved projection and |PΩc | is the number in PΩc set.
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Synthetic Data

I Randomly generate U(i) ∈ R100×10

I generate the graph Laplacian matrix Lap(U(1)) ∈ R100×100

of U(1)

I Lap(U(1)) = V ΛV> by SVD

T can be generated as follows

T(1) = V Λ.−2U(1)(U3 � U(2))>,
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Flow Injection Analysis

I Rank-deficient spectral FIA dataset
I The represented tensor is of size

12(substances)× 100(wavelengths)× 89(reactiontimes).
I For 12 chemical substances, we build the similarity

between two substances as the inverse of Euclidean
distance between their feature vectors.

I For wavelengths and reaction times, the similar matrices
are tridiagonal.
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Conclusion

I Low-rank tensor completion problem (LRTC) is to find a
tensor with the minimum rank, which subjects to the
equality constraints given by the observations.

I Graph Laplacian regularizer can help to improve the
recovery quality when the missing ratio is high.

I Alternating minimization method is efficient to solve the
LRTC problem.

I Our model achieve comparable error rates, while being
significantly scalable.
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Questions?
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