Alternating Minimization Algorithms for Graph Regularized Tensor Completion

Yu Guan Shuyu Dong, Pierre-Antoine Absil, François Glineur

INMA, UCLouvain

Oct 1, 2019

_icteam

Numerical Result

What is a tensor

Figure : $x \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^4, X \in \mathbb{R}^{4 \times 5}, \mathcal{X} \in \mathbb{R}^{4 \times 5 \times 3}$

くしゃ ふぼ きょう きょう きょう

2/31

Introduction

Motivating Examples

Model

Figure : Column, row, and tube fibers of a order-3 tensor

<ロ><回><週><注><2><10><10</1><10><10</1><10</1><10</1></1>

Numerical Result

Multiway Data

- Psychometrics: individual × variable × time
- Time-series analysis: time × variable × lag
- Neuroscience: electrodes × time × frequency
- Social networks: users × keywords × time
- Facial image: people × view × illumination × expression × pixels
- Atmospheric science: location × variable × time × observation

Introduction	Motivating Examples	Model	Numerical Result

Tensor Completion

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 9 ()
5/31

Recommender System

Numerical Result

Movie Rating

Introduction

Motivating Examples

Model

Numerical Result

Spatio-Temporal Data

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 9/31

Numerical Result

Numerical Result

Other Examples

- Image Inpainting
- Video Inpainting
- Link Prediction
- EEG Data

BRAIN

Why some data is missing

- API restriction
- Error occurs when collecting the data
- Access restriction
- Sampling method
- Some of the data does not exist

Kronecker Product.

The Kronecker product of vectors $\mathbf{u} = [u_r] \in \mathbb{R}^{l_1}$ and $\mathbf{v} = [v_r] \in \mathbb{R}^{l_2}$ results in a vector $\mathbf{u} \otimes \mathbf{v} \in \mathbb{R}^{l_1 l_2}$ defined as

$$\mathbf{u}\otimes\mathbf{v}=\left[egin{array}{c} u_1\mathbf{v}\ u_2\mathbf{v}\ dots\ u_{l_1}\mathbf{v}\ dots\ u_{l_1}\mathbf{v}\end{array}
ight].$$

Khatri-Rao Product.

The Khatri-Rao product $U \odot V$ of two matrices $U = [u_{\ell,r}] \in \mathbb{R}^{l_1 \times R}$ and $V = [v_{\ell,r}] \in \mathbb{R}^{l_2 \times R}$ is

$$U \odot V = [u_{:,1} \otimes v_{:,1}, \ldots, u_{:,R} \otimes v_{:,R}]$$

Tensor matricization.

Let $\mathcal{T} \in \mathbb{R}^{l_1 \times l_2 \times ... \times l_k}$ is a *k*-th order tensor, the unfolded matrix is

$$\mathcal{T}_{(\ell)} \in \mathbb{R}^{I_{\ell} imes (I_1 \dots I_{\ell-1} I_{\ell+1} \dots I_k)}$$

Figure : Unfolding Image

Numerical Result

/31

CP Decomposition

The CANDECOMP/PARAFAC(CP) model represents a tensor as a sum of rank-one tensors

$$T = \sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \circ \cdots \circ \mathbf{u}_{r}^{(k)} = \llbracket U^{(1)}, \dots, U^{(k)} \rrbracket$$

Low Rank Tensor Completion (LRTC)

For a given tensor $\mathcal{T} \in \mathbb{R}^{l_1 \times \ldots \times l_k}$, we want to find a low rank tensor \mathcal{Z} by solving the following optimization problem

$$\min_{\mathcal{Z}} \quad \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathcal{T} - \mathcal{Z}) \|_{F}^{2} + \sum_{i=1}^{k} \lambda_{i} \| \mathcal{Z}_{(i)} \|_{*}$$

where \mathcal{P}_{Ω} is the projection operator that only retains those entries of the tensor that lie in the set Ω .

Low Rank Tensor Completion (LRTC)

For a given tensor $\mathcal{T} \in \mathbb{R}^{l_1 \times \ldots \times l_k}$, we want to find a low rank tensor \mathcal{Z} by solving the following optimization problem

$$\min_{\mathcal{Z}} \quad \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathcal{T} - \mathcal{Z}) \|_{F}^{2} + \sum_{i=1}^{k} \frac{\lambda_{i}}{2} \{ \| U^{(i)} \|_{F}^{2} + \| (U^{(j)})^{\odot_{j \neq i}} \|_{F}^{2} \}$$

where \mathcal{P}_{Ω} is the projection operator that only retains those entries of the tensor that lie in the set Ω .

Numerical Result

Auxiliary Similarity

▶ < ≣ > ≣ ৩৭়ে 17/31

Our LRTC Model

$$\min_{U^{(1)},...,U^{(k)}} f(U^{(1)},...,U^{(k)}) = \frac{1}{2} \|\mathcal{P}_{\Omega}(\mathcal{T} - \llbracket U^{(1)},...,U^{(k)} \rrbracket)\|_{F}^{2} \\
+ \sum_{i=1}^{k} \frac{\lambda_{i}}{2} \|U^{(i)}\|_{F}^{2} + \sum_{i=1}^{k} \frac{\lambda_{i}}{2} \|(U^{(j)})^{\odot_{j\neq i}}\|_{F}^{2} \\
+ \boxed{\sum_{i=1}^{k} \frac{\lambda_{L}}{2} \left\langle U^{(i)}U^{(i)^{\top}}, \mathbf{Lap}(U^{(i)}) \right\rangle}_{18/3}.$$

イロト 不得 トイヨト イヨト

19/31

Algorithm 1 Altmin for solving LRTC

Initialization: $U_0^{(1)}, \dots, U_0^{(k)}$ 1: for $p = 0, \dots, k$ do 2: for $i = 1, \dots, k$ do 3: $U_{p+1}^{(i)} = argminf(U_{p+1}^{(1)}, \dots, U_{p+1}^{(i-1)}, U^{(i)}, U_p^{(i+1)}, \dots, U_p^{(k)})$ 4: end for 5: end for Compared with other algorithms, alternating minimization has several advantages for LRTC problem:

- It is easy to implement as there is no need to tune optimization parameters like step sizes.
- It converges very fast in practice.
- ► The objective function *f* is not convex with respect to variables U⁽¹⁾,..., U^(k) together while the subproblem is easy to solve as it has a closed-form solution.
- ► Obviously, the objective function *f* is monotone decreasing.

Theorem

The iterates $\{U_p^{(1)}, \ldots, U_p^{(k)}\}$ generated by Algorithm 1 from any initialization converges globally to a critical point of *f*.

Proof.

- *f* is a KŁ function with $\theta \in [1/2, 1)$
- Each subproblem is strongly convex.
- Notice f is coercive and real analytic, it is guaranteed to produce a bounded sequence.
- *f* is a C[∞] function, thus ∇*f* is Lipschitz continuous on any bounded subset of domain.

Numerical Result

22/31

Numerical Example

- Model advantage
 - Our model
 - Model without graph regularizer
 - Model without any regularizer
- Effectiveness of the proposed methods

CPU time

- ► Reconstruction error (RE) = <u>||*T*-[[*U*⁽¹⁾,*U*⁽²⁾,*U*⁽³⁾]]||_F</sub>, where *T* is the ground truth.</u>

イロト 不得 トイヨト イヨト

24/31

Numerical Result

Synthetic Data

- ▶ Randomly generate $U^{(i)} \in \mathbb{R}^{100 \times 10}$
- Generate the graph Laplacian matrix Lap(U⁽¹⁾) ∈ ℝ^{100×100} of U⁽¹⁾
- Lap $(U^{(1)}) = V \wedge V^{\top}$ by SVD

 ${\mathcal T}$ can be generated as follows

$$\mathcal{T}_{(1)} = V \Lambda.^{-2} U^{(1)} (U^3 \odot U^{(2)})^\top,$$

ntroduction	Motivating	Examples		Model		Numerical Resu
		SR=1%	0		SR=5%	
Method	GM	WGM	NM	GM	WGM	NM
Altmin-CG	0.2342 0.4	4395 0.	4006*10	$0.6611*10^{-3}$	$0.6356*10^{-3}$	$0.1098*10^{-1}$
Altmin-ADMM	0.2484 0.2	3644 0.1	$1492*10^2$	$0.6553 * 10^{-3}$	$0.6375*10^{-3}$	$0.1095*10^{-1}$
			TIPLE			

RE of the three models: GM 1 (with graph Laplacian), WGM (without graph Laplacian), NM (no regularizer).

Numerical Result

Flow Injection Analysis

- Rank-deficient spectral FIA dataset
- The represented tensor is of size 12(substances) × 100(wavelengths) × 89(reactiontimes).
- For 12 chemical substances, we build the similarity between two substances as the inverse of Euclidean distance between their feature vectors.
- For wavelengths and reaction times, the similar matrices are tridiagonal.

duction	tion Motivating Examples				Model			Numerical Resul		
		SR=1	1%		SR=5	5%	S	R=10%		
Method	GM	SR=1 WGM	l% NM	GM	SR=5 WGM	5% NM	S GM	R=10% WGM	NM	
Method Alt-CG	GM 0.6469	SR=1 WGM 0.8795	1% NM 8.2624	GM 0.0220	SR=5 WGM 0.0326	5% NM 3.9585	S GM 0.0135	R=10% WGM 0.0166	NM 0.6746	
Method Alt-CG Alt-ADM	 0.6469 И 0.5752	SR=1 WGM 0.8795 0.7678	% NM 8.2624 1.5776	GM 0.0220 0.0113	SR=5 WGM 0.0326 0.0113	5% NM 3.9585 0.1107	S GM 0.0135 0.0140	R=10% WGM 0.0166 0.0171	NM 0.6746 0.0380	
Method Alt-CG Alt-ADM	GM 0.6469 4 0.5752	SR=1 WGM 0.8795 0.7678	NM 8.2624 1.5776	GM 0.0220 0.0113 TABLE 0	SR=5 WGM 0.0326 0.0113	5% NM 3.9585 0.1107	S GM 0.0135 0.0140	R=10% WGM 0.0166 0.0171	NM 0.6746 0.0380	

28/31

29/31

Numerical Result

Conclusion

- Low-rank tensor completion problem (LRTC) is to find a tensor with the minimum rank, which subjects to the equality constraints given by the observations.
- Graph Laplacian regularizer can help to improve the recovery quality when the missing ratio is high.
- Alternating minimization method is efficient to solve the LRTC problem.
- Our model achieve comparable error rates, while being significantly scalable.

Numerical Result

[1] SONG, QINGQUAN AND GE, HANCHENG AND CAVERLEE, JAMES AND HU, XIA, *Tensor completion algorithms in big data analytics*, ACM Transactions on Knowledge Discovery from Data (TKDD), 13(1) (2019). Introduction

Motivating Examples

Model

Numerical Result

Thank you!

< □ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ♪ 31/31