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Summary

This thesis is to study a few problems on tensor decompositions and approxima-

tions in real space. Among other things, we revisit the classical problem of finding

the best rank-R CANDECOMP/PARAFAC(CP) approximation with different cases

R > 1 and R = 1 respectively.

• Best rank-R CP approximation

For a given order-k tensor T , determine unit vectors u
(`)
r ∈ RI` , ` = 1, . . . k

and scalars λr, r = 1, . . . , R to minimize∥∥∥∥T − R∑
r=1

λru
(1)
r ⊗ · · · ⊗ u(k)

r

∥∥∥∥2

F

.

Unlike the rank-1 approximation is theoretically guaranteed to have a global opti-

mum, general rank-R approximation (R > 1) may not exist in real space. So, there

should be an added orthogonality requirement to ensure the existence of R > 1

case. In contrast to the conventional approach by the so-called alternating least

squares (ALS) method that works to adjust one factor a time, proposed SVD-based

algorithms improve two factors simultaneously. Convergence analysis both for the

generalized Rayleigh quotient and the iterates themselves is the main contribution

of this thesis. In addition, we also study the convergence property of a general

framework called alternating direction methods (ADM) in this thesis.
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Chapter 1
Introduction

1.1 Applications of tensor decompositions

After Hitchcock originally proposed the notion of tensor decomposition in 1927

[92,93], it has been applied in a wide range of areas: signal processing [6,38,48,59–61,

64,73,105,145,160], numerical linear algebra [62,63,77,110,111,124,197], computer

vision [87, 159, 183–188], numerical analysis [19, 20, 80, 81, 94, 103, 104], data mining

and analysis [3–5,12,36,42,43,131,134,158,170–172,180] graph analysis [13,113,115],

neuroscience [1, 2, 18, 66, 67, 136–138, 141–144], chemometrics [7, 9, 26, 127, 163], im-

age processing [53, 184, 186, 187, 196], component analysis [101, 119], network anal-

ysis, scientific computing, telecommunications [57, 161, 162], independent compo-

nent analysis (ICA) [58], Newton potential [80, 81], stochastic PDEs [69, 194] and

many other areas [25, 27, 48, 49, 54, 65, 72, 88, 106, 118, 155, 163]. Moreover, there

are several software packages available for tensor structures and decompositions

in [8, 11,14,15,76,122,152,191,195].

1



1.2 Main decompositions and approximations 2

1.2 Main decompositions and approximations

Rank-1 tensor

Rank-1 tensor has the form u(1)⊗. . .⊗u(k) :=
[
u

(1)
i1
. . . u

(k)
ik

]
, where vectors u(j) ∈

RIj with elements [u
(j)
ij

] for j = 1, . . . , k.

Tensor decomposition

Tensor decomposition is to rewrite the given tensor T as the summation of some

rank-1 tensors.

Among many kinds of decompositions of high order tensors, the most general

two are Tucker decomposition [62,63,92,178] and CP decomposition [32,72,82,107].

• Tucker decomposition

T =
∑

r1,r2,...,rk

λr1,r2,...,rku
(1)
r1
⊗ · · · ⊗ u(k)

rk
, (1.1)

where λr1,r2,...,rk ∈ R and u
(`)
r` ∈ RI` are unit vectors for ` = 1, . . . , k.

• CP decomposition

T =
∑
r

λru
(1)
r ⊗ · · · ⊗ u(k)

r , (1.2)

where λr ∈ R and u
(`)
r ∈ RI` are unit vectors for ` = 1, . . . , k.

Tucker decomposition also named as higher-order PCA was first introduced by

Tucker [176] in 1963 and redefined in [128, 177, 178]. CANDECOMP/PARAFAC

(CP) decomposition, also named as polyadic form, CANDECOMP (canonical de-

composition) and PARAFAC (parallel factors) were proposed by Hitchock in 1927

[92, 93], Cattell in 1944 [34, 35], Carroll and Chang in 1970 [32] and Harshman in

1970 [82]. Both Tucker decomposition and CP decomposition can be considered to

be higher order generalizations of the matrix singular value decomposition (SVD)

and principal component analysis (PCA).



1.2 Main decompositions and approximations 3

Besides CP and Tucker, there are lots of other tensor decompositions related to

or transformed by them. For example, Carroll and Chang [32] proposed individual

differences in scaling (INDSCAL) in 1970, Harshman [83] named parallel factors for

cross products (PARAFAC2) in 1972, Carroll et al. [33] introduced CANDECOMP

with linear constraints (CANDELINC) in 1980, Harshman [84] established decom-

position into directional components (DEDICOM) in 1978 and he with Lundy [85]

presented PARAFAC and Tucker2 (PARATUCK2) in 1996 and so on.

Rank

We clarify the name of ”rank” here which refers to the number of rank-1 tensors

that generate or approximate the given tensor. It might be the same with (outer-

product) tensor rank defined in [40,65,92,121]. Since we care about ”low rank”, this

number will be fixed on low rank approximation problem. Many kinds of ranks are

named such as multilinear rank [65], border rank [65], symmetric rank [50], generic

rank [65].

Tensor approximation

As finding an exact decomposition of a tensor is NP-hard [86,91], an alternative

approach is finding the low rank approximation which seems more computationally

feasible. Tensor approximation is to minimize the difference between the given tensor

and the summation in the sense of the Frobenius norm after fixing the ”rank” whose

choice is itself a difficult problem [52,114,121] and affects the quality of approxima-

tion. Three well known approximations which receive most concern and interest are

rank-1 approximation [63, 197], rank-(r1, r2, . . . , rk) approximation with a full core

and k orthogonal side-matrices (in the Tucker/HOOI fashion) and approximations

using R outer-product terms (in the CANDECOMP/PARAFAC fashion).

• Best rank-1 approximation

The problem of finding a best rank-1 approximation to a given order-k tensor
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T is to determine unit vectors u(`) ∈ RI` , ` = 1, . . . k, and a scalar λ such that∥∥∥T − λu(1) ⊗ · · · ⊗ u(k)
∥∥∥2

F
(1.3)

is minimized.

• Tucker nearest problem

For a given order-k tensor T , determine unit vectors u
(`)
r` ∈ RI` , ` = 1, . . . k

and scalars λr1,r2,...,rk to minimize∥∥∥∥T − ∑
r1,r2,...,rk

λr1,r2,...,rku
(1)
r1
⊗ · · · ⊗ u(k)

rk

∥∥∥∥2

F

, (1.4)

subject to 〈u(`)
ri ,u

(`)
rj 〉 = δrirj for all ` = 1, . . . , k.

• Best rank-R CP approximation

For a given order-k tensor T , determine unit vectors u
(`)
r ∈ RI` , ` = 1, . . . k

and scalars λr, r = 1, . . . , R to minimize∥∥∥∥T − R∑
r=1

λru
(1)
r ⊗ · · · ⊗ u(k)

r

∥∥∥∥2

F

. (1.5)

This thesis focuses on best rank-1 approximation (1.3) and low rank CP approxi-

mation (1.5). In the following subsection, we will mainly introduce the backgrounds,

existing work and algorithms on these two approximations. Other kinds of decom-

positions and approximations will just be introduced shortly and not covered deeply.

1.3 Low rank approximations

1.3.1 Existence and ill-posedness

Firstly, we discuss the existence of best low rank approximations in 3 cases.

1) Best low rank approximation of a matrix (k = 2).

For matrices of order-2 tensors, Eckart and Young [70] showed that a best rank-R

approximation always exists and is precisely given by the truncated singular value

decomposition (TSVD).
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Theorem 1.3.1. [70] Given a matrix A and its singular value decomposition is

A = UΣV > = Udiag(σ1, . . . , σR, 0, . . . , 0)V >, then for any r with 0 ≤ r ≤ R,

Ar =
∑r

i=1 σiuiv
T
i is the global minimum of

Ar = argminrank(B)≤r‖A−B‖F ,

where ui is the i-th column of U while vi is the i-th column of V .

2) Best rank-1 approximation of a general tensor.

For a high order tensor, it has been theoretically guaranteed to have a best rank-1

approximation, see [65].

Corollary 1.3.1. [65] Every tensor has a best rank-1 approximation.

3) Best rank-R (R > 1) approximation of a general tensor.

It has been pointed out that the best low rank approximation for high-order

tensors may not exist at all [65, 114, 116, 126, 167, 169]. Here we list two examples.

A rank-3 tensor fails to have a best rank-2 approximation and a rank-6 tensor fails

to have a best rank-5 approximation.

Example 1 [65] Let u1,v1 ∈ RI1 , u2,v2 ∈ RI2 , and u3,v3 ∈ RI3 be vectors such

that each pair ui,vi is linearly independent. Define tensor

T := u1 ⊗ u2 ⊗ v3 + u1 ⊗ v2 ⊗ u3 + v1 ⊗ u2 ⊗ u3 ∈ RI1×I2×I3 ,

and for each n ∈ N,

Tn := n

(
u1 +

1

n
v1

)
⊗
(

u2 +
1

n
v2

)
⊗
(

u3 +
1

n
v3

)
− nu1 ⊗ u2 ⊗ u3.

Then T has rank 3 and rank of Tn is at most 2. But ‖Tn − T‖ → 0 as n → ∞.

Therefore, T does not have a best rank-2 approximation.

Example 2 [23] Let u1,u2,u3,u4 be linearly independent. Define

T := u1⊗u1⊗u1+u1⊗u2⊗u3+u2⊗u3⊗u1+u2⊗u4⊗u3+u3⊗u1⊗u2+u3⊗u2⊗u4

and, for ε > 0,

Tε : = (u2 + εu1)⊗ (u2 + εu4)⊗ ε−1u3 + (u3 + εu1)⊗ ε−1u1 ⊗ (u1 + εu2)
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−ε−1u2 ⊗ u2 ⊗ (u1 + u3 + εu4)− ε−1u3 ⊗ (u1 + u2 + εu3)⊗ u1

+ε−1 (u2 + u3)⊗ (u2 + εu3)⊗ (u1 + εu4) .

Then rank of Tε is at most 5 and T is rank 6. But ‖Tε − T‖ → 0 as ε → 0. T has

no optimal approximation by tensors of rank ≤ 5.

Specifically, Silva and Lim [65] showed that the problem of optimal low rank

approximation of higher order tensors is ill-posed for many ranks and arbitrary order

(k ≥ 3). Thus an optimal solution for CP approximation need not exist. Apart from

the CP model, such failure also occur in other component models, see [68,117,168].

Moreover, [51] indicated that this phenomenon can extend to symmetric tensors.

Many examples of such failure can also be found in [108,153,190]. We conclude the

ill-posedness by restating a general result in [65].

Theorem 1.3.2. [65] For k ≥ 3 and I1, I2, . . . , Ik ≥ 2, there exists a tensor T ∈

RI1×I2×...×Ik of rank r + s that has no optimal rank-r approximation, for any r and

s ≥ 1 satisfying 2s ≤ r ≤ min{I1, I2, . . . , Ik}.

1.3.2 Solution

Since the best low rank approximation may not exist, the question is how to

avoid this failure. Imposing an extra requirement of orthogonality [40,116] changes

the approximation problem (1.5) to an optimization over a compact set, thus it guar-

antees the existence of global optimum. Kolda [110] investigated various orthogonal

conditions related to different definitions of orthogonality, including orthogonality,

complete orthogonality and strong orthogonality which will be discussed in detail

in Chapter 4. Here we briefly introduce complete orthogonality [40, 110, 114] and

semi-orthogonality [40,166,190].

[116] proved the following theorem to show that the CP approximation (1.5)

does attain its infimum under semi-orthogonality constraint.

Theorem 1.3.3. [116] There exists a solution to the CP approximation problem

(1.5) subject to semi-orthogonality constraint (〈u(i)
r1 ,u

(i)
r2 〉 = δr1r2 for one i from
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{1, . . . k}).

In 2009, [40] discussed a form of low rank approximation with diagonal core with

complete orthogonality constraint, i.e., complete CP approximation and proved its

existence of global optimum theoretically.

Theorem 1.3.4. [40] There exists a solution to the CP approximation problem (1.5)

subject to complete orthogonality constraint (〈u(i)
r1 ,u

(i)
r2 〉 = δr1r2 for all i = 1, . . . , k).

Imposing orthogonality is not only for the theoretical purpose, but also has

many applications in signal processing, wireless communication systems, blind signal

separation and identification, and independent component analysis [167,180].

1.4 Algorithms and convergence analysis

1.4.1 Best rank-1 approximation

Many efforts for finding the best rank-1 approximation of a general tensor (1.3)

have been made in the literature, yet the problem is still not settled. See, for ex-

ample, [24, 95, 109, 112, 114, 189, 197]. The difficulty is partly due to the curse of

dimensionality, whence the rapid growth of computational overhead, and partly the

nonlinearity, whence the stagnation at a local solution. For example, the alternating

least squares (ALS) method works on improving one factor a time. Assuming the

form as a high-order power method, the ALS is easy to implement and has been con-

ventionally employed as the workhorse for low rank tensor approximation. However,

the method suffers from slow convergence and easy stagnation at a local solution.

Thus it is appealing that maybe alternating two factors simultaneously by employing

the singular value decomposition (SVD) as the two-in-one optimization mechanism

could result in better performance. The idea was mentioned in [63, Section 3.3] with

no particular elaboration, and was more carefully postulated in [75] with numerical

testing on some synthetic and real data sets of third-order tensors. This approach
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has the obvious advantage that, starting from the same point, one step of SVD-

based iteration is superior to two consecutive steps of ALS iteration. There is no

theory at present to support that the improvement by the SVD-based iteration will

continue to be superior in the long run. Through numerical experiments, however,

it has been suggested that for large scale data the SVD-based method might have

better limiting behavior leading to better approximations [75, Section 5].

1.4.2 Best rank-1 approximation of a symmetric tensor

Symmetric tensor

A given tensor T ∈ Rn×...×n with elements τi1,...,ik is said to be symmetric if

τi1,...,ik = τiσ(1),...,iσ(k) with respect to all possible permutations σ over the integers

{1, . . . k}.

Consider the best rank-1 approximation of a symmetric tensor (1.3), it was

conjectured in [154] and proved that the best symmetric rank-1 approximation to a

symmetric tensor is its best rank-1 approximation [198, Theorem 2.1]. The proof was

by induction. However, a more correct way of stating this result is that the best rank-

1 approximation to a symmetric tensor ”can be chosen” symmetric [74, Theorem 9],

because there might be non-symmetric best rank-1 approximations [74, Section 4]

for a symmetric tensor. Even more precisely, except for symmetric tensors lying

on a specific real algebraic variety, a generic symmetric tensor has a unique rank-

1 approximation which, hence, is symmetric [74]. With all these being said, we

make an interesting remark that perhaps it was Stefan Banach who first noted in

the context of homogeneous polynomials [16] that a best rank-1 approximation of a

symmetric tensor could be chosen to be symmetric. Discussions on different aspects

of rank-1 approximation to symmetric tensors can be found in [17, 50, 99, 109, 148].

Research endeavor on this subject is still ongoing. See, for example, some more

recent work in [55,182].
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1.4.3 Existing algorithms for CP approximation

Now we introduce the algorithms about finding the best low rank CP approx-

imation. The first method is to generate singular value decomposition (SVD) for

a matrix into high order SVD for a tensor. Eckart and Young [70] showed that

the best rank-R approximation of a matrix is given by truncated SVD and the or-

thogonality is an inherent property. However, this type of result does not hold for

higher-order tensors [40,62,96,109,111,126,130,135,152,180]. Second idea is to re-

peat R times of best rank-1 approximation to form the rank-R approximation since

the best rank-1 always exists. The detailed way is firstly to compute an optimal

rank-1 approximation and subtract it from the original tensor, yielding the so-called

residual tensor. Then repeat the process until the rank-R approximation is obtained.

But Kolda [110] provided a counter example to show that this approximation is not

the best.

Assuming the number of components is fixed, the ”workhorse” algorithm for

computing a low rank CP decomposition has been the alternating least squares

(ALS) algorithm [32, 52, 82, 114, 173]. Then, its local convergence has been estab-

lished in [179] under additional conditions. Later on, it has been proved that both

objective value and the iterates generated by the ALS method for low rank approx-

imation converge globally for almost all tensors in [190]. Notice that this low rank

CP approximation has addressed semi-orthogonality constraint by proposing polar

decomposition [40,157]. Under the same constraint, [166] developed two new numer-

ical approaches – simultaneous matrix diagonalization (SD-CPO) and ALS applied

to the combined mode matrices (ALS-CPO).

However, there are some shortcomings about ALS method although it is simple

to implement. The convergence is quite slow and it cannot be guaranteed to con-

verge to a global minimum. The final solution is heavily dependent on the starting

point which is another interesting problem on how to choose a good starting point.

Later on, some papers [174, 175] work on the strategies to improve the efficiency of

ALS such as line searches [149, 156], Tikhonov regularization [147]. Recently, the
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comparison among ALS with other methods such as alternating slicewise diagonal-

ization (ASD) method [98], damped Gauss-Newton (dGN) and PMF3 [151] can be

found in [28,72].

1.4.4 Existing algorithms for Tucker nearest problem

We briefly introduce some popular algorithms which are applied to compute

Tucker nearest problem. For example, ALS [32, 82], Tucker1 method [178] also

named as higher order singular value decomposition (HOSVD) [62], TUCKALS3

[120] and its extension [101], higher order orthogonal iteration (HOOI) method [63]

and its improvement [30], Newton-Grassmann method [71], differential-geometric

Newton method [97] and MBI method [37]. For more discussions on the Tucker

problem, see [114].

1.5 Road map and our contributions

We provide the outline of this thesis below.

1.5.1 Synopsis of Chapter 2: symmetric best rank-1 approx-

imation

We provide three algorithms based on the singular value decomposition (SVD)

that modify two factors a time to find the best rank-1 approximation to a sym-

metric tensor. Comparing with existing alternating least squares (ALS) technique

which improves one factor a time, one step of SVD-based iteration is superior to

two steps of ALS iterations. Noting that generically the best rank-1 approxima-

tion to a symmetric tensor is symmetric. We prove that not only the generalized

Rayleigh quotients generated from the three SVD-based algorithms enjoy monotone

convergence, but also that the iterates themselves converge.
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1.5.2 Synopsis of Chapter 3: non-symmetric best rank-1

approximation

The problem is to find the best rank-1 approximation to a generic tensor. The

main focus of this chapter is on providing a mathematical proof for the convergence

of the iterates of SVD-based algorithms. The ALS method is easy to implement, but

suffers from slow convergence and easy stagnation at a local solution. It has been

suggested that the SVD-algorithm might have a better limiting behavior leading to

better approximations. We provide a rigorous mathematical proof for the conver-

gence of iterates and our approach relies on only the continuity of singular vectors

and real analysis.

1.5.3 Synopsis of Chapter 4: orthogonal low rank approxi-

mation

In this chapter, we study the orthogonal low rank approximation problem of ten-

sors in the general setting in the sense that more than one matrix factor is required

to be mutually orthonormal, which includes the completely orthogonal low rank ap-

proximation and semi-orthogonal low rank approximation as two special cases. It

has been addressed in [190] that ”the question of more than one semi-orthogonal

factor matrix, except for the case of complete orthogonality, remains open”. To

deal with this open question we present an SVD-based algorithm. Our SVD-based

algorithm updates two vectors simultaneously and maintains the required orthogo-

nality conditions by means of the polar decomposition. The convergence behavior

of our algorithm is analyzed for both objective function and iterates themselves and

is illustrated by numerical experiments.

1.5.4 Synopsis of Chapter 5: general convergence of ADM

For problems involving multiple variables, the notion of solving a sequence of

simplified problems by fixing all but one variable a time and alternating among the
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variables (ADM) has been exploited in a wide range of applications. We propose

a general framework that can be applied to prove convergence for many types of

alternating direction methods. The conditions are mild and easy to satisfy, so the

theory should be of fundamental significance to many algorithms. Its application to

a variety of important algorithms is demonstrated below.

Applications to some known cases:

• The Gauss-Seidel method for solving a system of linear equations.

• The power method for finding the dominant eigenvector.

• The alternating least squares method for computing the QR decomposition.

• The alternating projection method for finding structured low rank matrices.

• Best rank-one tensor approximation.

• Tucker nearest problem.

• Structured Kronecker approximation.

1.5.5 Synopsis of Chapter 6: conclusion

1.5.6 Synopsis of Chapter 7: list of author’s publications



Chapter 2
Symmetric Best Rank-1 Approximation

2.1 Introduction

A real-valued tensor of order k can be represented by a k-way array

T = [τi1,...,ik ] ∈ RI1×I2×...×Ik

with elements τi1,...,ik accessed via k indices. A tensor of the form

k⊗
`=1

u(`) = u(1)⊗. . .⊗u(k) :=
[
u

(1)
i1
. . . u

(k)
ik

]
, (2.1)

where elements are the products of entries from vectors u(`) ∈ RI` , ` = 1, . . . , k, is

said to be of rank one. When I1 = . . . = Ik, we have a square tensor. An order-k

square tensor T is said to be symmetric if

τi1,...,ik = τiσ(1),...,iσ(k) (2.2)

with respect to all possible permutations σ over the integers {1, . . . k}. A symmetric

rank-1 tensor therefore necessarily implies that u(`) = c`u
(1) for some scalar c`,

` = 2, . . . , k. In this case, we denote I1 = . . . = Ik = n and write
⊗k

`=1 u = uk.

The problem of finding a best rank-1 approximation to T is to determine unit

vectors u(`) ∈ RI` , ` = 1, . . . k, and a scalar λ such that the functional

f
(
λ,u(1), . . . ,u(k)

)
:=

∥∥∥∥∥∥T − λ
k⊗
`=1

u(`)

∥∥∥∥∥∥
2

F

=
∑

i1,i2,...,ik

(
τi1,...,ik − λu

(1)
i1
. . . u

(k)
ik

)2

(2.3)

13
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is minimized. For any fixed unit vectors u(1), . . . ,u(k), the optimal value of λ for

(2.3) is given precisely by the length of the projection of the ”vector” T onto the

direction of the ”unit vector”
⊗k

`=1 u(`) ∈ RI1×I2×...×Ik , i.e.,

λ = λ
(
u(1), . . . ,u(k)

)
=

〈
T,

k⊗
`=1

u(`)

〉
. (2.4)

Thus, minimizing the orthogonal component of T , as is desired in (2.3), is equivalent

to maximizing the length |λ| of the parallel component. In [197], the expression (2.4)

is called the generalized Rayleigh quotient of T corresponding to {u(1), . . . ,u(k)}.

Many approaches for finding the extreme values of (2.4) have been proposed in the

literature. See, for example, [24, 75, 95, 109, 112, 114]. Switching the signs of the

variables u(`), if necessary, we may restrict our attention without loss of generality

to the case that λ > 0 only.

2.1.1 Summary

This chapter contains two parts. First, we offer a simple argument that the

symmetry of the best rank-1 approximation for a generic symmetric tensor can easily

be understood with the notion of conventional singular value decomposition (SVD)

for matrices. Second, we turn that argument into iterative SVD-based algorithms

for computing the symmetric best rank-1 approximation. Our main focus is on the

second part where we offer a convergence analysis that is new in the literature.

2.1.2 Outline of the chapter

This chapter is organized as follows. We begin with the introduction of some no-

tations and basic facts in Section 2.2. Then, using well known properties of the SVD,

we argue in a very concise way for the symmetry of the best rank-1 approximation

in Section 2.3. Depending on how the permutations are chosen when applying the

SVD successively to increase the objective value, we propose three algorithms for

computing the best rank-1 approximation in Section 2.4. Among these, Algorithm 1
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with cyclic permutation and Algorithm 2 with pre-assigned random permutation are

formulated due to their theoretical simplicity. In turn, they highly motivate Algo-

rithm 3 with post-assigned random permutation which is the easiest to implement.

Convergence analysis is given in Section 2.5 where we first prove that the generalized

Rayleigh quotients of all three algorithms converge monotonically and then detail

the limiting behavior of the iterates generated by Algorithm 3 and Algorithm 1.

Some numerical examples together with some interesting observations are presented

in Section 2.6.

2.2 Basics

Tensors are multi-dimensional arrays. Thus, there are multiple ways to define

tensor multiplications. Their appearances are often rather complex and perplexing.

To facilitate the subsequence discussion, we first introduce a simple notation system

that generalizes what we already know from the matrix theory. We also establish a

few useful tools.

2.2.1 Multi-indexing

Suppose that the set JkK is partitioned as the union of two disjoint nonempty

subsets α = {α1, . . . , αs} and β = {β1, . . . , βt}, where s + t = k. We sometimes

abbreviate β = {α}C since β is a complement of α. Choosing various ways to

partition JkK offers us a convenient tool to dissect a high-dimensional array T and

exam its cross-sections from different perspectives. For instance, an element in the

tensor TRI1×I2×...×Ik can be identified as τ
(α,β)
[I|J ] where I := (i1, . . . , is) and J :=

(j1, . . . , jt) contain those indices at locations α and β, respectively. Each index

in the arrays I and J should be within the corresponding range of integers, e.g.,

i1 ∈ JIα1K and so on. In a sense, the subsets α and β are to replace the role of row

or column in matrices for tensors.
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Operator product. Given a partitioning (α,β), the β-product of T with a

tensor A ∈ RIα1×...×Iαs is defined to be

Tβ(A) := T~β A =
[
〈τ (α,β)

[:|J ] , A〉
]
∈ RIβ1×...×Iβt , (2.5)

where

〈τ (α,β)
[:|J ] , A〉 :=

Iα1∑
i1=1

. . .

Iαs∑
is=1

τ
(α,β)
[i1,...,is|J ]ai1,...,is (2.6)

is the Frobenius inner product generalized to multi-dimensional arrays. In terms of

the multi-index notation, the J -th entry of Tβ(A) can be interpreted as

(Tβ(A))J =
∑
I

τ
(β,α)
[J |I] aI , (2.7)

where the summation of I runs through appropriate ranges of the indices i1, . . . , iαs .

In this way, the tensor T is considered as matrix representation of the linear map

Tβ from RIα1×...×Iαs to RIβ1×...×Iβt and the tensor-to-tensor operation ~β defined in

(2.5) generalizes the conventional matrix-to-vector multiplication.

2.2.2 Basic Lemmas

Each of the following sequence of results is elementary but together they are

helpful tool for algebraic manipulations throughout the discussion.

Lemma 2.2.1. Given a general tensor T ∈ RI1×I2×...×Ik , a partitioning JkK = α∪β,

and vectors u(`) ∈ RI`, ` = 1, . . . , k, then it holds that〈
T,

k⊗
`=1

u(`)

〉
=

〈
T~β

s⊗
i=1

u(αi),

t⊗
j=1

u(βj)

〉
. (2.8)

Proof. Based on the definition (2.5), the right hand side of (2.8) is simply a rear-

rangement of terms in the summation by the associative law.

Lemma 2.2.2. Given a general tensor T ∈ RI1×I2×...×Ik , arbitrary vectors u(αi) ∈

RIαi , i = 1, . . . , k − 2, and v ∈ RIβ2 , thenT~{β1,β2} k−2⊗
i=1

u(αi)

v=

T~{β1,αj} j−1⊗
i=1

u(αi)⊗v⊗
k−2⊗
i=j+1

u(αi)

u(αj) (2.9)

for any j ∈ Jk − 2K.
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Proof. The notion of a tensor entry τ
(α,β)
[I|J ] defined earlier will be informative here

for tracking which index is being associated with which location. The µ-th entry of

the vector
(
T~β

⊗k−2
i=1 u(αi)

)
v is given by

Iβ2∑
ν=1

 Iα1∑
i1=1

. . .

Iαk−2∑
ik−2=1

τ
(α,β)
[i1,...,ik−2|µ,ν]u

(α1)
i1

. . . u
(αk−2)
ik−2

 vν

=

Iα1∑
i1=1

. . .

Iαk−2∑
ik−2=1

Iβ2∑
ν=1

τ
(α
⋃
{β2},{β1})

[i1,...,ik−2,ν|µ] u
(α1)
i1

. . . u
(αk−2)
ik−2

vν

=

Iαj∑
ij=1

 Iα1∑
i1=1

. . .

Iαk−2∑
ik−2=1

Iβ2∑
ν=1

τ
(α
⋃
{β2}−{αj},{β1,αj})

[i1,...,ik−2,ν|µ,ij ] u
(α1)
i1

. . . u
(αk−2)
ik−2

vν

u
(αj)
ij

,

where the last equality is obtained by the associative law so that the summation

inside the parentheses contains no u
(αj)
ij

terms.

Lemma 2.2.3. Given a symmetric tensor T ∈ Rn×...×n of order k and two fixed

positive integers s and t with k = s + t, let v(`) ∈ Rn, ` = 1, . . . , s, be arbitrary

vectors. Then the product T~β

⊗s
i=1 v(ρi) is a symmetric tensor of order t and is

independent of any permutation ρ of JsK and any subset β ⊂ JkK with cardinality t.

Proof. Let JkK = α ∪ β be a partitioning where, without loss of generality, indices

in β are arranged in ascending order. Then for `j ∈ JnK, j = 1, . . . , t, we haveT~β

s⊗
i=1

v(ρi)


`1,...,`t

=
n∑

i1=1

. . .
n∑

is=1

τ
(α,β)
[i1,...,is|`1,...,`t]v

(ρ1)
i1

. . . v
(ρs)
is

=
n∑

i1=1

. . .
n∑

is=1

τi1,...,is,`1,...,`tv
(ρ1)
i1

. . . v
(ρs)
is

=
n∑

iρ−1(1)=1

. . .

n∑
iρ−1(s)=1

τiρ−1(1),...,iρ−1(s),`1,...,`t
v

(1)
iρ−1(1)

. . . v
(s)
iρ−1(s)

.

In the above, the symmetry of T implies that the location of β is immaterial and

thus the second equation is obtained by moving `1, . . . , `t to the end of the index

array, whereas ρ−1 denotes the inverse of the permutation ρ. By renaming iρ−1(j) as

ij, j = 1, . . . , s, we see that the reference to ρ is also immaterial.
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Corollary 2.2.1. Under the same condition of Lemma 2.2.3, the associative law

T~
s⊗
i=1

v(ρi) =

T~ j⊗
i=1

v(ρi)

~ s⊗
i=j+1

v(ρi) (2.10)

holds for any j ∈ JsK and any permutation ρ of JsK.

When the subset β ⊂ JkK is of cardinality 2, then Lemma 2.2.3 can be generalized

to arbitrary tensor of order k − 2.

Lemma 2.2.4. Given a symmetric tensor T ∈ Rn×...×n of order k is symmetric and

a subset β ⊂ JkK with cardinality 2, then, with respect to any tensor S ∈ Rn×...×n of

order k − 2, the product T~β S is a symmetric matrix.

Proof. For convenience, write M := T~β S. By the definition (2.5), M is a matrix.

Observer that

mij = 〈τ[:|i,j], S〉 = 〈τ[:|j,i], S〉 = mji,

because τ[:|i,j] = τ[:|j,i] by the symmetry of T .

For latter usage in our proof for convergence, we also need the following results

from real analysis.

Lemma 2.2.5. Let {ak} be a bounded sequence of real numbers with the property

|ak+1− ak| → 0 as k →∞. If the accumulation points for the sequence are isolated,

then {ak} converges to a unique limit point.

Proof. Suppose {aαk} and {aβk} are two subsequences of {ak} which converge, re-

spectively, to two distinct limit points, x and y. Let z denote any fixed real number

between x and y. For a positive number r, let Bx(r) denote the neighborhood

[x− r, x+ r] of x.

For any 0 < ε < 1
4

min{|x − z|, |y − z|}, there exists a large enough integer

K = K(ε) such that aαk ∈ Bx(ε), aβk ∈ By(ε), and |ak+1 − ak| < ε for all k ≥ K.

Infinitely many elements of {ak} must leave Bx(ε) to enter By(ε) and vise versa. By

doing so, there is an infinite subsequence of {ak} contained in Bz(ε). This shows
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that z is also an accumulation point. Since z is arbitrary, we have shown any number

between x and y is an accumulate point. This contradicts the assumption that the

accumulation points are isolated.

Lemma 2.2.5 asserts the uniqueness. A slight variation requiring a weaken as-

sumption and resulting only a local convergence will also fit our need. The proof of

following Lemma can be found in [140, Lemma 4.10], [198, Proposition 3.2] and [79,

Lemma 6], but we prove it in another way.

Lemma 2.2.6. Assume that a∗ is an isolated accumulation point of a bounded se-

quence {ak} such that for every subsequence {akj} converging to a∗, there is an

infinite subsequence {akji} such that |akji+1 − akji | → 0. Then the whole sequence

{ak} converges to a∗.

Proof. There are some ambiguities in the original proof [140, Lemma 4.10]. See

also [198, Proposition 3.2]. We take this opportunity to clarify the dubiety.

We prove by contradiction. Suppose that the sequence {ak} does not converge

to a∗. Since a∗ is isolated, there exists a neighborhood Nε(a
∗) := {x ∈ R||x −

a∗| ≤ ε} such that a∗ is the only accumulation point of the sequence {ak}. Choose

{akj} be an arbitrary subsequence of {ak} contained in Nε(a
∗). For each j, let

{akj , akj+1, . . . , a`j} be the largest consecutive segment of {ak} that starts at akj

and stays inside Nε(a
∗), i.e.,

`j := max{`| |ai − a∗| ≤ ε, i = kj, kj + 1, . . . , `}.

If `j is infinite, |ak − a∗| ≤ ε hold for all k large enough and for arbitrary ε which

implies that {ak} converges to a∗. But this contradicts with assumption.

If `j is finite, by construction, the subsequence {a`j} has the property

|a`j − a∗| ≤ ε, |a`j+1 − a∗| > ε.

Since {a`j} is a bounded sequence, a subsequence {a`ji} must converge. Notice that

{a`ji} is contained in Nε(a
∗), and by the property of isolation, the limit point must



2.3 Symmetric best rank-1 approximation 20

be a∗. Therefore |a`ji − a
∗| < ε

2
when i is large enough. In this way, we have found

a convergent subsequence {a`ji}, but element by element we always have the gap

|a`ji+1 − a`ji | ≥ |a`ji+1 − a∗| − |a`ji − a
∗| ≥ ε

2
.

This is a contradiction to |a`ji+1 − a`ji | → 0. Therefore, the whole sequence {ak}

converges to a∗.

2.3 Symmetric best rank-1 approximation

We now argue that the best rank-1 approximation to a generic symmetric tensor

is symmetric. We shall not assume a priori that the best rank-1 approximation is

unique, nor that a symmetric best rank-1 approximation always exists. All we need

is the following fundamental fact from matrix theory.

Lemma 2.3.1. Given a matrix A ∈ Rm×n, then the global maximum of the gener-

alized Rayleigh quotient

max
y ∈ Rm, ‖y‖ = 1

z ∈ Rn, ‖z‖ = 1

y>Az (2.11)

is precisely the largest singular value σ1 of A, where the global maximizer (y1, z1)

consists of precisely the corresponding left and right singular vectors. The best rank-

1 approximation to A is given by σ1y1z
>
1 . In the event that A ∈ Rm×m is symmetric

and that the largest singular value of A is simple, then y = ±z depending on the sign1

of the dominant eigenvalue λ1 = ±σ1 and, hence, the best rank-1 approximation to

A is symmetric.

The condition that the largest singular value of A is simple is generic in the

sense that the symmetric matrices with multiply eigenvalues form an algebraic va-

riety of codimension two [56]. Consequently, the symmetric matrices that do not

1We shall use the symbol ± to indicate a proper sign selection in the subsequent discussion

when there is no need to specify the sign.
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have a unique symmetric best rank-1 approximation form an algebraic variety of

codimension one [74, Lemma 3].

Built upon Lemma 2.3.1, we explain in the argument below the kind of generic

property we need for a symmetric tensor. We justify the symmetry by comparing

two components a time in the rank-1 tensor.

Suppose that λ
⊗k

`=1 u(`) is the best rank-1 approximation to a given order-k

symmetric tensor T . By (2.4), the generalized Rayleigh quotient λ =
〈
T,
⊗k

`=1 u(`)
〉

is positive and maximal. Consider the case β = {1, 2}. By Lemma 2.2.1, we can

write

λ =

〈
T~β

k⊗
`=3

u(`),u(1)⊗u(2)

〉
.

By Lemma 2.2.4, the matrix C := T~β

⊗k
`=3 u(`) is symmetric. Assume that the

largest singular value, which is λ, of C is simple. Then, by Lemma 2.3.1, we conclude

that u(1) = ±u(2). Moving to the choice β = {2, 3} and assuming again that λ is

simple for the newly defined matrix C, we than have u(2) = ±u(3). Continuing

this process, we conclude that u(1), . . . ,u(k) differ from each other by at most a

negative sign. At the end, we may write λ
⊗k

`=1 u(`) = ±λu(1)k. So the best rank-1

approximation to a symmetric tensor is necessarily symmetric.

2.4 Computation

The argument in the preceding section motivates an SVD-based way to calculate

the symmetric best rank-1 approximation by iterations. The idea of using the SVD

instead of the ALS is not new. It has been proposed for general tensors in [75],

but so far as we know no convergence analysis has ever been established. The main

contribution of this chapter is to furnish the proof of convergence for symmetric

tensors.
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2.4.1 Update with cyclic progression

The most basic approach is outlined in Algorithm 1. For efficiency, we also

propose a modification by random permutations in Algorithm 2 followed by a more

simplified Algorithm 3. Two types of dynamics are involved in all algorithms. One

is the dynamics of the objective values, of which the analysis is straightforward. The

other is the dynamics of the iterates, which is much harder to characterize. We will

discuss the convergence in the next section.

To convey the idea, it is convenient to adopt the subscript [p] in Algorithm 1 to

indicate the quantity at the p-th iteration. Each sweep of p at Line 1 in Algorithm 1

involves k pairs of β ranging circularly from (1, 2), (2, 3), . . . , (k, 1). Thus, each u
(`)
[p+1]

is updated twice. The first updates for ` = 2, . . . , k, denoted by û
(`)
[p+1] at Line 10, are

not essential and can be completely removed from the algorithm without affecting

the calculation, but their presences help bridge the monotonicity in theory. The

update û
(1)
[p+1] is temporarily overwritten as u

(1)
[p+1] at Line 9 for the computation of

C
(`)
[p] at Line 4 for ` = 2, . . . , k− 1, but will be updated again at Line 17. The switch

of sign at Line 7 conditioned upon Line 6 is to ensure that the iterates will be aligned

in one direction and thus avoid jumping back and forth. Also, by Lemma 2.2.3, the

reference to β` in the multiplication by ~β` at Line 4 is entirely unnecessary. We

include it in the description to help keep track of the procedure. We register the

intermediate values λ
(`)
[p+1] as well, even though only λ

(k)
[p+1] at the final stage is crucial.

The above algorithm is different from the alternating least squares (ALS) ap-

proach that has been popular for computing the best rank-1 approximation [50,

109, 197]. The most significant difference is that, since the dominant singular vec-

tor u
(`)
[p+1] of the matrix C

(`)
[p] gives rise to the absolute maximal value λ

(`)
[p+1] for the

functional

g(x,y) :=

〈
T,

`−1⊗
i=1

u
(i)
[p+1]⊗x⊗y⊗

k⊗
i=`+2

u
(i)
[p]

〉
(2.12)

among all possible vectors x and y, the mechanism of updating x and y simulta-

neously in Algorithm 1 is going to increase the generalized Rayleigh quotient faster
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Algorithm 1 (Best rank-1 approximation via SVD updating with cyclic progres-

sion.)

Input: An order-k, n-dimensional, symmetric tensor T and k starting unit vectors

u
(1)
[0] , . . . ,u

(k)
[0] ∈ Rn

Output: A local best rank-1 approximation to T

1: for p = 0, 1, · · · , do

2: for ` = 1, 2, · · · , k − 1, do

3: β` = (`, `+ 1)

4: C
(`)
[p] = T~β`

⊗`−1
i=1 u

(i)
[p+1]⊗

⊗k
i=`+2 u

(i)
[p]

5: [u, s,v] = svds(C
(`)
[p] , 1) {Dominant singular value triplet via Matlab

routine svds}

6: if u1 < 0 then

7: u = −u {Assume the generic case that u1 6= 0; otherwise, use another

entry.}

8: end if

9: u
(`)
[p+1]

:= u {If ` = 1, this is û
(1)
[p+1]; otherwise this is the second update

u
(`)
[p+1], if 2 ≤ ` < k.}

10: û
(`+1)
[p+1]

:= u {Skipping this step will not affect C
(`+1)
[p] at Line 4.}

11: λ
(`)
[p+1]

:= s

12: end for

13: βk = (k, 1)

14: C
(k)
[p] = T~βk

⊗k−1
i=2 u

(i)
[p+1]

15: [u, s,v] = svds(C
(k)
[p] , 1) {Dominant singular value triplet via Matlab routine

svds}

16: u
(k)
[p+1]

:= u {Adjust the sign properly as in Line 6.}

17: u
(1)
[p+1]

:= u

18: λ
(k)
[p+1]

:= s

19: end for
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Algorithm 2 (Best rank-1 approximation via SVD updating with randomization.)

Input: An order-k, n-dimensional, symmetric tensor T and k starting unit vectors

u(1), . . . ,u(k) ∈ Rn

Output: A local best rank-1 approximation to T

1: t← 0

2: λ0 ←
〈
T,
⊗k

`=1 u(`)
〉

3: repeat

4: t← t+ 1

5: σ ← random permutation of {1, . . . , k}

6: βt ← (σk−1, σk) {Randomly select two factors}

7: Ct ← T~βt

⊗k−2
i=1 u(σi)

8: [ut, st,vt] = svds(Ct, 1) {Dominant singular value triplet via Matlab routine

svds}

9: if (ut)1 < 0 then

10: ut = −ut

11: end if

12: λt ← st

13: u(σk−1),u(σk) ← ut

14: until λt meets convergence criteria

than the combination of two applications of ALS approach to x followed by y. The

gain is also better than the maximum of updating x or y separately as that discussed

in [75, Preposition 4].

2.4.2 Update with random permutation

An alternative way to cut short the iterates required by the `-loop in Algorithm 1

is to shuffle the columns u(1), . . . ,u(k) by a random permutation σ and generate

a matrix C for updating. This randomized procedure is modified at Line 7 in

Algorithm 2. To avoid confusion with data generated from Algorithm 1, we employ
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a slightly different notation when describing this algorithm. Again, by Lemma 2.2.3,

the reference to βt is irrelevant. For simplicity, we always choose to update the last

two vectors u(σk−1),u(σk) after the permutation. A classical result in probability

theory asserts that the expected number of trials for a permutation to recur is

k(k−1)
2

. But by the time that a repetition occurs, the vectors u(1), . . . ,u(k) should

have been updated. If the convergence is ever to happen, the effect of reshuffling

will gradually diminish.

2.4.3 Update with post-randomization

To carry out the permutation u(σi) at Line 7 in Algorithm 2 is still cumbersome.

Since the purpose of permutation is simply to mingle the vectors, we may consider

the alternative by postponing the permutation to the end of calculation as is indi-

cated in Algorithm 3. It can be argued that Algorithm 2 would be equivalent to

Algorithm 3 in the sense that, if one could foresee the future permutation at Line 7

and prearrange the columns in the order
{

u(σ1), . . . ,u(σk)
}

before Line 5 in Algo-

rithm 3, then both algorithms would be using the same Ct. In reality, of course, such

a rearrangement does not happen, so we distinguish the progress of the generalized

Rayleigh quotient by a different notation µt. Though µ0 = λ0 to begin with, this µt

in general is not the same as the λt generated by Algorithm 2 when t ≥ 1. Note the

simplification at Line 5 in Algorithm 3 which utilizes only the first k − 2 vectors.

The permutation at Line 12 will help intermingle the vectors before the next step.

Another difference between Algorithm 2 and Algorithm 3 deserves noting. In

Algorithm 2, the replacement at Line 13 does not interfere with the vectors u(σi),

i ∈ Jk − 2K, used to define Ct at Line 7. But in Algorithm 3, the replacement at

Line 12 may affect 0, 1 or 2 many of the first k − 2 vectors used to define Ct at

Line 5.

Indeed, with probability (k−2)(k−3)
k(k−1)

the perturbation σ will ask to replace 2 such

vectors, which is high when k is large. We may thus consider a subclass of Algo-

rithm 3 by requiring the update at Line 12 be limited to Jk − 2K. The limit points
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Algorithm 3 (Best rank-1 approximation via SVD updating with post-

randomization.)

Input: An order-k, n-dimensional, symmetric tensor T and k starting unit vectors

u(1), . . . ,u(k) ∈ Rn

Output: A local best rank-1 approximation to T

1: t← 0

2: µ0 ←
〈
T,
⊗k

`=1 u(`)
〉

3: repeat

4: t← t+ 1

5: Ct ← T~
⊗k−2

i=1 u(i)

6: [ut, st,vt] = svds(Ct, 1) {Dominant singular value triplet via Matlab routine

svds}

7: σ ← random permutation of {1, . . . , k}

8: if (ut)1 < 0 then

9: ut = −ut

10: end if

11: µt ← st

12: u(σk−1),u(σk) ← ut {Randomly replace two factors}

13: until µt meets convergence criteria

of {ut} by this subclass iteration form a subset of those by the unmodified Algo-

rithm 3. Our numerical experiments suggest that both versions have the same set

of limit points.

2.4.4 Symmetric update

Finally, since the best rank-1 approximation of symmetric tensors is symmetric,

all factors should be the same eventually. It is tempting to exploit the mechanism

of keeping the symmetry at every iteration once an SVD is done. We outline the

procedure in Algorithm 4. The contrast is at Line 5 where Ct is calculated based on



2.5 Convergence analysis 27

Algorithm 4 (Best rank-1 approximation via symmetric SVD.)

Input: An order-k, n-dimensional, symmetric tensor T and a starting unit vector

u0 ∈ Rn

Output: A local best rank-1 approximation to T

1: t← 0

2: µ0 ←
〈
T,
⊗k

`=1 u0

〉
3: repeat

4: t← t+ 1

5: Ct ← T~
⊗k−2

i=1 u0 {Using the same factor for all}

6: [ut, st,vt] = svds(Ct, 1) {Dominant singular value triplet via Matlab routine

svds}

7: if (ut)1 < 0 then

8: ut = −ut

9: end if

10: µt ← st

11: u0 ← ut

12: until µt meets convergence criteria

one single factor ut. Indeed, a similar idea has been proposed in [109] as the sym-

metric high-order power method whose performance has been reported as poor. We

shall demonstrate in our numerical experiment that Algorithm 4 does not perform

competitively either. Though interesting, this algorithm is of little importance to

us. We mention it in passing and we do not consider it as a contribution.

2.5 Convergence analysis

In this section, we analyze the convergence for the above algorithms. We first

show the monotonicity of the generalized Rayleigh quotients. Most importantly,

we argue that the iterates themselves also converge. The latter answers an open
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question on convergence analysis for the SVD-based methods, as it offers an under-

standing of what was declared as ”we do not have a complete understanding when

this will happen” in [75, Page 947]. We concentrate mainly on Algorithm 3 for its

practicality in implementation. We also include the behavior of Algorithm 1 for its

elegance in theory. The analysis of Algorithm 2 is left to interested readers.

2.5.1 Convergence of objective values

Because the SVD is involved, where the dominant singular value and singular

vector are selected at each update, all three algorithms enjoy the property that

the corresponding sequences of the generalized Rayleigh quotients are bounded and

monotone increasing.

Lemma 2.5.1. The scalars
{
λ

(`)
[p]

}
generated in Algorithm 1 form a monotone con-

vergent sequence for each ` = 1, . . . , k and all converge to the same value.

Proof. It suffices to prove the assertion for the case λ
(k)
[p] because the following argu-

ment shows that all other cases are sandwiched in between.

By applying Lemma 2.3.1 to each of the matrices C
(`)
[p] consecutively, we observe

that at any stage of p the inequalities

λ
(k)
[p] =

∣∣∣∣∣∣
〈
T,

k⊗
`=1

u
(`)
[p]

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
T~β1

k⊗
`=3

u
(`)
[p] ,u

(1)
[p] ⊗u

(2)
[p]

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
〈
T~β1

k⊗
`=3

u
(`)
[p] , û

(1)
[p+1]⊗û

(2)
[p+1]

〉∣∣∣∣∣∣
= λ

(1)
[p+1] =

∣∣∣∣∣∣
〈
T~β2

û
(1)
[p+1]⊗

k⊗
`=4

u
(`)
[p] , û

(2)
[p+1]⊗u

(3)
[p]

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
〈
T~β2

û
(1)
[p+1]⊗

k⊗
`=4

u
(`)
[p] ,u

(2)
[p+1]⊗û

(3)
[p+1]

〉∣∣∣∣∣∣
= λ

(2)
[p+1] ≤ . . .

≤ λ
(k−1)
[p+1] =

∣∣∣∣∣∣
〈
T, û

(1)
[p+1]⊗

k−1⊗
`=2

u
(`)
[p+1]⊗û

(k)
[p+1]

〉∣∣∣∣∣∣
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=

∣∣∣∣∣∣
〈
T~βk

k−1⊗
`=2

u
(`)
[p+1], û

(1)
[p+1]⊗û

(k)
[p+1]

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
〈
T~βk

k−1⊗
`=2

u
(`)
[p+1],u

(1)
[p+1]⊗u

(k)
[p+1]

〉∣∣∣∣∣∣ = λ
(k)
[p+1]

are always maintained. The monotone sequence
{
λ

(k)
[p]

}
is bounded above by ‖T‖F ,

so it must converge. The inequalities sandwich the sequences one after another, so

their limit points must be the same.

Lemma 2.5.2. The scalars {λt} generated in Algorithm 2 form a monotone con-

vergent sequence.

Proof. By applying Lemma 2.3.1, it is still true that at any stage of t we always

have

λt =

∣∣∣∣∣∣
〈
T,

k⊗
`=1

u(`)

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
T~βt

k−2⊗
i=1

u(σi),u(σk−1)⊗u(σk)

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
〈
T~βt

k−2⊗
i=1

u(σi),ut+1⊗ut+1

〉∣∣∣∣∣∣ = λt+1,

since ut+1 is the dominant singular vector of the matrix T~βt

⊗k−2
i=1 u(σi). Again,

the monotone sequence {λt} is bounded above by ‖T‖F , so it must converge.

Lemma 2.5.3. The scalars {µt} generated in Algorithm 3 form a monotone con-

vergent sequence.

Proof. Suppose that Ct = T~
⊗k−2

i=1 u(i) has been defined in terms of vectors

u(1), . . . ,u(k−2) from the previous step. Suppose also that its dominant singular

vector ut has been calculated. Then

µt =

∣∣∣∣∣∣
〈
T~

k−2⊗
i=1

u(i),ut ⊗ ut

〉∣∣∣∣∣∣ . (2.13)

To proceed to the next step, some of these columns u(1), . . . ,u(k−2) might be replaced

by ut. Let Θo and Θ+ denote subsets of Jk − 2K containing indices of those vectors



2.5 Convergence analysis 30

that will not been changed and are to be updated, respectively. Depending on the

current permutation σt, there are three possible scenarios – the cardinality |Θ+| of

the set Θ+ can be 0, 1, or 2. By Lemmas 2.2.1 and 2.2.3, we may write

µt =

∣∣∣∣∣∣
〈
T,
⊗
i∈Θo

u(i) ⊗
⊗
j∈Θ+

u(j) ⊗ u2
t

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
T~

⊗
i∈Θo

u(i) ⊗ u
|Θ+|
t ,

⊗
j∈Θ+

u(j)⊗u
2−|Θ+|
t

〉∣∣∣∣∣∣
≤

∣∣∣∣∣∣
〈
T~

⊗
i∈Θo

u(i) ⊗ u
|Θ+|
t ,ut+1⊗ut+1

〉∣∣∣∣∣∣ = µt+1. (2.14)

In the above, we have adopted the notion that a factor of either
⊗

j∈∅ u
(j) or u0

t

means that it does not occur in the multiplication.

2.5.2 Convergence of iterates in Algorithm 3

The above argument about the monotonicity of values λ
(k)
[p] , λt, or µt is interesting

and important, but certainly not enough, because the convergence of objective values

does not guarantee the convergence of iterates to a global minimizer nor even to a

stationary point [114]. What need be done for both algorithms is to argue that

generically the iterates of vectors themselves also converge. Since Algorithm 3 is

our ultimate choice of scheme in view of its simplicity and effectiveness, we give a

detailed account of its dynamical behavior in this subsection.

For clarity, enumerate the column vectors at the end of each t-loop by
{

u
(1)
t , . . . ,u

(k)
t

}
in accordance with their original order. By construction, for t ≥ 1, at least two of

these vectors are identical and the rest are unchanged from the previous step. The

goal is to prove that these columns converge to the same vector as t goes to infinity,

regardless how the random permutation σ which varies in t takes place. Toward this

end, we establish a sequence of results.

Since the dominant singular vectors ut are always normalized to unit length, the

sequence {ut} must have a convergent subsequence. We first argue that its limit

point must propagate to all elements of
{

u
(1)
ti , . . . ,u

(k)
ti

}
in the following sense.
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Lemma 2.5.4. If
{
uti
}

is a convergent subsequence and limi→∞ uti = u, then

limi→∞ u
(`)
ti = u for all ` ∈ JkK.

Proof. Let
{
σ[ti]
}

denote the corresponding sequence of permutations used in the

algorithm for generating
{
uti
}

. Note that each time at least two vectors in the set{
u

(1)
ti , . . . ,u

(k)
ti

}
are identical with uti . Specifically, by Line 12 in the algorithm,

we have u

(
σ
[ti]

k−1

)
ti = u

(
σ
[ti]

k

)
ti = uti . As uti gets close to u, so do these two vectors.

However, since
{
σ[ti]
}

is of uniform distribution varying through all possible per-

mutations as i goes to infinity, the locations of the so called ”these two vectors”

must also pervade through all possible pairs in the set JkK. That is, all vectors in{
u

(1)
ti , . . . ,u

(k)
ti

}
are close to u when i is large enough.

Lemma 2.5.5. For almost all symmetric tensors T , the accumulation points of the

sequence {ut} generated by Algorithm 3 are geometrically isolated.

Proof. Suppose that u is an accumulation point. By Corollary 2.2.1, we may per-

form the following operation, and by Lemma 2.5.4, u is a solution to the nonlinear

equation

T~ uk−2 =
〈
T,uk

〉
u2. (2.15)

The equation (2.15) is a polynomial system of degree k + 2 in the unknown u ∈ Rn

with leading coefficient T . By the theory of parameter continuation [164, Theo-

rem 7.1.1], we know that for almost all symmetric tensor T , except for an affine

algebraic subset of codimension one, the solutions to (2.15) are isolated.

We stress that the polynomial system (2.15) might have multiple solutions. We

are interested in the real solution that maximizes the generalized Rayleigh quotient〈
T,uk

〉
. The monotone behavior of {λt} or {µt} seems to suggest that this is

happening. However, we can conclude only that a local maximum is being realized

by the iteration.

Theorem 2.5.1. For almost all symmetric tensors T , the sequence {ut} of dominant

singular vectors generated in Algorithm 3 converges.
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Proof. Suppose that {uti} is any subsequence converging to u. Suppose also by

Lemma 2.5.5 that u is isolated. By Lemma 2.5.4, the corresponding subsequences{
u

(`)
ti

}
converge to u for all ` ∈ JkK. By construction (Line 5 in Algorithm 3),

the subsequence {Cti+1} of matrices converges. By continuity, the subsequence{
uti+1

}
must also converge to u. In particular,

∥∥uti+1 − uti
∥∥→ 0. The condition in

Lemma 2.2.6 therefore is satisfied. It follows that the whole sequence {ut} converges

to u.

We conclude this part with a simple illustration. Given a symmetric tensor T

of order 3 and an arbitrary unit vector u0, Algorithm 3 can be cast as fixed-point

iteration defined by

ut+1 = F (ut), (2.16)

where F (u) represents the dominant singular vector of T~ u (with consistent sign

at the first entry). Then, by Theorem 2.5.1, the sequence {ut} converges.

2.5.3 Convergence of iterates in Algorithm 1

Algorithm 1 is somewhat too conservative for computation in practice. However,

its fundamental structure is the basis of Algorithm 3. In this subsection, we prove

its convergence.

The difficulty of Algorithm 1 is at the complexity that u
(`)
[p+1] depends on both the

new vectors
{

u
(i)
[p+1]

}
, i = 1, . . . , `− 1, and the old vectors

{
u

(i)
[p]

}
, i = ` + 2, . . . , k.

We first make the following observation about the collective behavior.

Lemma 2.5.6. There is a subsequence
{

u
(`)
[pj ]

}
generated by Algorithm 1 that con-

verges to the same limit point for all ` = JkK.

Proof. For each fixed `, it is always true that ‖C(`)
[p] ‖F ≤ ‖T‖F for all p because

‖
⊗`−1

i=1 u
(i)
[p+1]⊗

⊗k
i=`+2 u

(i)
[p]‖F = 1. The Bolzano-Weierstrass theorem guarantees a

convergent subsequence. There are only finitely many `. Selecting a subsequence

of a subsequence, if necessary, we can find a common subset
{
pj
}

of nonnegative
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integers so that
{
C

(`)
[pj ]

}
converges simultaneously for all ` ∈ JkK. We claim that the

assertion holds for the subsequence
{

u
(`)
[pj ]

}
.

For clarity, we accomplish the proof in two steps. First, we argue that the

sequences
{

u
(`)
[pj ]

}
converge simultaneously for all ` ∈ JkK. Second, we argue that

they converge to the same limit point.

By continuity, the sequences of the corresponding dominant singular vectors{
û

(1)
[pj+1]

}
and

{
u

(`)
[pj+1]

}
of
{
C

(`)
[pj ]

}
converge simultaneously for all ` ∈ JkK. Denote

limj→∞C
(`)
[pj ]

= C(`), limj→∞ û
(1)
[pj+1] = u

(1)
] and limj→∞ u

(`)
[pj+1] = u

(`)
] for ` = 2, . . . , k.

The subscript ] is a handy way to remind us that these are the limit points corre-

sponding to the subsequence [pj+1]. We shall assume the generic condition that C(`)

is nonsingular for all `.

To prove the simultaneous convergence, we consider separate cases:

Case 1. For ` = 4, . . . k, let η = ` − 2 so that 2 ≤ η ≤ k − 2. By using

Lemma 2.2.2, we obtain the equalities

C
(η)
[pj ]

u
(η)
[pj+1] =

(
T~βη

(
û

(1)
[pj+1]⊗. . .⊗u

(η−1)
[pj+1]⊗u

(η+2)
[pj ]
⊗u

(η+3)
[pj ]
⊗. . .⊗u

(k)
[pj ]

))
u

(η)
[pj+1]

=

(
T~βη+1

(
û

(1)
[pj+1]⊗. . .⊗u

(η−1)
[pj+1]⊗u

(η)
[pj+1]⊗u

(η+3)
[pj ]
⊗. . .⊗u

(k)
[pj ]

))
u

(η+2)
[pj ]

= C
(η+1)
[pj ]

u
(η+2)
[pj ]

. (2.17)

Taking the limits on both sides of (2.17), together with the non-singularity of C(η+1),

we see that limj→∞ u
(`)
[pj ]

exists for ` = 4, . . . , k. The algorithm entails that u
(1)
[pj ]

=

u
(k)
[pj ]

, so the convergence of u
(1)
[pj ]

is a by-product.

Case 2. For ` = 3, consider the identities

C
(1)
[pj ]

û
(1)
[pj+1] =

(
T~β1

(
u

(3)
[pj ]
⊗u

(4)
[pj ]
⊗. . .⊗u

(k)
[pj ]

))
û

(1)
[pj+1]

=

(
T~β2

(
û

(1)
[pj+1]⊗ u

(4)
[pj ]
⊗. . .⊗u

(k)
[pj ]

))
u

(3)
[pj ]

= C
(2)
[pj ]

u
(3)
[pj ]
. (2.18)

Taking the limits at both ends of (2.18), together with C(2) being nonsingular, we

see that limj→∞ u
(3)
[pj ]

exists.

Case 3. For ` = 2, observe the relationship

C
(k)
[pj−1]u

(k)
[pj ]

= ±λ(k)
[pj ]

u
(k)
[pj ]
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=

(
T~βk

(
u

(2)
[pj ]
⊗. . .⊗u

(k−1)
[pj ]

))
u

(k)
[pj ]

=

(
T~β1

(
u

(3)
[pj ]
⊗. . .⊗u

(k)
[pj ]

))
u

(2)
[pj ]

= C
(1)
[pj ]

u
(2)
[pj ]
. (2.19)

Though we do not know the convergence of C
(k)
[pj−1], the convergence of λ

(k)
[pj ]

, u
(k)
[pj ]

and

C
(1)
[pj ]

implies that limj→∞ u
(2)
[pj ]

exists, which in turn implies that C
(k)
[pj−1] converges.

Now we prove that sequences converge to the same limit point. Denote limj→∞ u
(`)
[pj ]

=

u
(`)
\ for ` = 1, . . . , k. It thus becomes clear that

C(`) = T~β`

(
u

(1)
] ⊗. . .⊗u

(`−1)
] ⊗u

(`+2)
\ ⊗u

(`+3)
\ ⊗. . .⊗u

(k)
\

)
. (2.20)

Analogous to (2.17), we mention also the identity

C
(k−1)
[pj ]

u
(k−1)
[pj+1] = ±λ(k−1)

[pj+1]u
(k−1)
[pj+1]

=

(
T~βk−1

(
û

(1)
[pj+1]⊗u

(2)
[pj+1]⊗. . .⊗u

(k−2)
[pj+1]

))
u

(k−1)
[pj+1]

=

(
T~βk

(
u

(2)
[pj+1]⊗. . .⊗u

(k−2)
[pj+1]⊗u

(k−1)
[pj+1]

))
û

(1)
[pj+1] = C

(k)
[pj ]

û
(1)
[pj+1].

It follows, by construction and continuity, that we have the relationships

±λ̃u
(1)
\ = ±λ̃u

(k)
\ = C(1)u

(2)
\ , (2.21)

C(`)u
(`)
] = ±λ̃u

(`)
] = C(`+1)u

(`+2)
\ , ` = 1, . . . , k − 2, (2.22)

C(k−1)u
(k−1)
] = ±λ̃u

(k−1)
] = C(k)u

(1)
] , (2.23)

C(k)u
(k)
] = ±λ̃u

(k)
] . (2.24)

By continuity again, note that λ̃ is the dominant singular value of all matrices C(`),

` = 1, . . . , k. Under the assumption that λ̃ is simple, the corresponding singular

vector is unique up to a sign change. However, because in Lines 6 to 8 of Algorithm 1

we have required that the first entry of the dominant singular vector be positive,

such a sign change does not exist. Recursively, we obtain the relationships
u

(1)
] = u

(1)
\ = u

(k)
\ = u

(2)
\ ,

u
(`)
] = u

(`+2)
\ ,

u
(1)
] = u

(k−1)
] = u

(k)
] .

` = 1, . . . , k − 2, (2.25)
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These relationships allow us to write

λ̃ =

∣∣∣∣〈C(1),u
(1)
] ⊗u

(1)
]

〉∣∣∣∣ =

∣∣∣∣∣
〈
T~β1

(
u

(3)
\ ⊗u

(4)
\ ⊗. . .⊗u

(k)
\

)
,u

(1)
\ ⊗u

(2)
\

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
T~β2

(
u

(1)
\ ⊗u

(4)
\ ⊗. . .⊗u

(k)
\

)
,u

(2)
\ ⊗ u

(3)
\

〉∣∣∣∣∣
=

∣∣∣∣∣
〈
T~β2

(
u

(1)
] ⊗u

(4)
\ ⊗. . .⊗ u

(k)
\

)
,u

(2)
\ ⊗ u

(3)
\

〉∣∣∣∣∣ .
But we also have

λ̃ =

∣∣∣∣〈C(2),u
(2)
] ⊗ u

(2)
]

〉∣∣∣∣ =

∣∣∣∣∣
〈
T~β2

(
u

(1)
] ⊗u

(4)
\ ⊗. . .⊗ u

(k)
\

)
,u

(2)
] ⊗ u

(2)
]

〉∣∣∣∣∣ .
By the uniqueness of the dominant singular vector, since the first entry is kept

positive, we conclude that

u
(2)
] = u

(2)
\ . (2.26)

Repeating this process, we can prove that u
(`)
] = u

(`)
\ for ` = 2, . . . , k − 1. Together

with (2.25), we finally prove that the sequence
{

u
(`)
[pj ]

}
converges to the same limit

point for all ` = 1, . . . k.

Corollary 2.5.1. If the sequences
{
C

(`)
[pj ]

}
of matrices converge simultaneously for

all ` ∈ JkK, then they converge to the same limit point for all ` ∈ JkK.

Proof. The assertion follows from (2.20) and the fact that u
(`)
] = u

(`)
\ for ` ∈ JkK

which has been proved in the previous lemma.

In the proof of Lemma 2.5.6, we make use of simultaneously convergent subse-

quences
{
C

(`)
[pj ]

}
to argue the simultaneously convergent subsequences

{
u

(`)
[pj ]

}
. We

can also reverse the argument.

Corollary 2.5.2. If subsequences
{

u
(`)
[pj ]

}
converge simultaneously for all ` ∈ JkK,

then so do subsequences
{
C

(`)
[pj ]

}
and

{
u

(`)
[pj+1]

}
.

Proof. The simultaneous convergence of
{

u
(`)
[pj ]

}
for ` = 3, . . . k implies that the

subsequence
{
C

(1)
[pj ]

}
converges. By continuity,

{
û

(1)
[pj+1]

}
converges. But then by
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definition,
{
C

(2)
[pj ]

}
converges and, thus, so does

{
u

(2)
[pj+1]

}
. Cycling through the

`-loop in Algorithm 1, the assertion is proved.

Theorem 2.5.2. For almost all symmetric tensors T , the sequences {u(`)
[p]} generated

in Algorithm 1 converge to the same limit point.

Proof. Let
{

u
(`)
[pj ]

}
be any simultaneously convergent subsequences. By Corollary 2.5.2,

the corresponding subsequences
{
C

(1)
[pj ]

}
converge simultaneously. Using the same ar-

gument in the proof of Lemma 2.5.6, we see that subsequences
{

u
(`)
[pj ]

}
and

{
u

(`)
[pj+1]

}
converge to the same limit point for all ` ∈ JkK. The limit point must satisfy the poly-

nomial system (2.15), whence we assume is geometrically isolated. By Lemma 2.2.6,

we obtain the convergence.

2.6 Numerical examples

Note that all the experiments in this thesis are performed on a MacBook with 2.3

GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory running MATLAB

with version R2015a (8.5.0.19613).

In this section, we carry out some numerical experiments to demonstrate the

working of our algorithms. We concentrate mostly on Algorithm 3. Because the size

of data grows rapidly as nk, we will not list the test data. At present, we pay no

attention to fine tune the implementation for efficiency either. We simply describe

how we set up our experiments and present some empirical observations.

Example 1. Our first concern is the complexity analysis of the algorithm.

Given the abilities of high performance (vector or parallel) processors today, simple

floating-point operations (flops) counts are not at all valid any more. On the other

hand, on a dedicated machine, the CPU time should be approximately proportional

to the number of flops, albeit the I/O will also cost time. We decide to measure the

CPU time required in each of the major components in the algorithm. We divide

the measurement as follows:
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• TOuter = the time needed to form the outer product
⊗k−2

i=1 u(i).

• TC = the time needed to perform the tensor multiplication ~ for creating Ct

in Line 5.

• TSV D = the time needed for the SVD at Line 6.

• TTotal = the total execution time, including every other possible details such

as I/O.

For the case k = 3, we vary the dimension n = 2p for p = 4, . . . , 9. For the case k = 4,

an order-4 tensor of dimension n = 28 requires 32GB bytes. So we limit ourselves to

p = 4, . . . , 7 only. Each case of p is repeatedly tested 20 times with random starting

unit vectors and we plot the average as the running time in Figure 2.1.

It should not be surprising that the overhead TOuter remains almost constant for

the case k = 3 because no outer product is needed except for swapping columns at

Line 12. However, we find that neither TOuter does vary significantly even for the

case k = 4. What is interesting is that for small size problems, say, n ≤ 32, the

overhead TTotal is attributed mainly to TSV D. But when n is sufficiently large, while

the SVD should cost more time, the cost TC of the tensor product ~ outweighs TSV D

of the SVD. It is seen in Figure 2.1 that when n = 29 and k = 3 or when n = 27

when k = 4, the main contribution to TTotal is from TC .
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Figure 2.1: Breakdown of CPU time needed for calculation of major parts in Algorithm 3.
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Example 2. We are curious about the performance of the SVD-based algo-

rithms when comparing among themselves as well some of the popular methods.

For this purpose, we apply the same stopping criteria to all methods — the itera-

tion terminates when three consecutive generalized Rayleigh quotients do not vary

more than the tolerance 10−8. We measure the CPU time needed by our Algorithms

1-4, as well as the conventional ALS and symmetric ALS [109]. The problem sizes

are chosen in the same way as in Example 1. We execute each algorithm by 20 runs

with random initial unit vectors. They may converge to different limit points, but

we give every algorithm the same criteria to reach convergence. We compute the

average time. In all tests, we find that Algorithm 3 is fastest especially for large

p in Figure 2.2. Algorithm ALS and Algorithm 2 perform better when p is small.

Compared to randomise methods Algorithm 2 and Algorithm 3, Algorithm 1 is less

effective for both small and large p.
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Figure 2.2: Breakdown of CPU time for comparison among different methods.

In Example 1, we find that the β-product T~β S is the most expensive part of

the calculation for our Algorithm 3. Since the conventional ALS method involves a

similar calculation, we make a rough complexity comparison between Algorithm 3

and the conventional ALS method. In the ALS method, forming
⊗k−1

i=1 u(i) requires

nk−1 entry-to-entry multiplications and there are k layers to form the inner product

T~
⊗k−1

i=1 u(i). Together with the required normalization, the ALS method requires

nk+nk−1 +n scalar multiplications per update. In contrast, the SVD-based method
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requires nk + nk−2 scalar multiplications per β-product if k > 3, and n3 if k = 3.

Additionally, the svds involved in the SVD-based method requires more overhead

than the normalization involved in the ALS method. It is difficult to estimate how

many iterations are required inside the svds to generate the dominant singular value

triplet, but the total cost should not be worse than O(n3). We thus estimate that

the SVD-based method requires O(nk+nk−2 +n3) scalar multiplications per update.

These estimates seem compatible per update, however, the numerical evidence in

Example 2 clearly demonstrates that overall Algorithm 3 is significantly faster than

the ALS method.

Though they are not in the same category, it might be interesting to com-

pare the above-mentioned complexities of the iterative methods in one update to

those of finite algorithms. The so called SeROAP method proposed in [55] requires

O(2p(nk+1−n2)
n−1

) scalar multiplications (where p is a user-defined parameter) for the

decreasing order phase and O(2(nk+1−n2)
n−1

) scalar multiplications for the projection

phase. Similarly, the ST-HOSVD and T-HOSVD methods proposed in [182] require

O(n
k+2+nk−n2−1

n−1
) and O(kn

k+2+(1−k)nk+1−n
n−1

) operations, respectively. These finite al-

gorithms give rise to some good approximations, but have no mechanism for further

improvement. So, they might serve as a good starting point for further iteration

such as by our SVD-based methods and the ALS method. We have not explored

this hybrid approach in this study.

It is worthy of a further remark on whether or how a scheme preserves sym-

metry. At first glance, it might seem that in our algorithms A1, A2, and A3, we

have imposed symmetry because we update two vectors simultaneously by the same

dominant singular vector. The fact is that because only two vectors are updated a

time while others are not affected, the symmetry is not required or even expected.

One of the most important points in our theory is that at the end all factors in

iterates converge to the same vector and, hence, symmetry shows up. On the other

hand, as is reported in Figure 2.2, imposing symmetry in the ALS scheme, which is

the SALS method, or imposing total symmetry in the SVD-based scheme, which is
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the A4 algorithm, has no advantage over the conventional ALS or the randomized

A3 algorithm.

Finally, we need to point out that, although the symmetric limit point (by non-

symmetric algorithms) for symmetric tensors is expected in theory, we have to set

some stopping criteria for the iteration in practice. Consequently, the numerical

results returned by non-symmetric algorithms might not be perfectly symmetric. In

contrast, the symmetric ALS method in [109] and our totally symmetric SVD-based

method (A4) always keep the symmetry in each step. They are slower, but have

the advantage of keeping the symmetry in bay when comparing to non-symmetric

algorithms.

Example 3. Even though we have taken the advantage of the SVD that pro-

duces the best approximation per iteration, its effect is limited to the locality. We

generate 15 random vectors xi ∈ R10 and combine them into T =
∑15

i=1 x7
i . As these

vectors {xi} are linearly dependent, we no longer have a good way to estimate the

rank of T [50]. Still, its best rank-1 approximation is guaranteed to exist. Applying

Algorithm 3 with 20 distinct sets of random starting unit vectors, we plot history

of iterations for each of the 20 tests. We continue to observe properties such as

convergence and monotonicity discussed earlier in this chapter. However, numerical

results in Figure 2.3 indicate the possibility of having multiple local solutions. See

Lemma 2.5.5. The number of locally best rank-1 approximations should be the same

of real solutions to the polynomial system (2.15), but that depends on T . While

the SVD-based algorithms seem capable of capturing the solution with ”larger” ob-

jective values in most of the trials, this experiment demonstrates that the notion of

the best rank-1 approximation should be interpreted only locally.

Example 4. To experiment the sensitivity of a rank-1 tensor subject to pertur-

bations, we randomly generate six vectors x0,x1, . . . ,x5 ∈ R10 from the identical and

independent standard normal distribution. Define T0 = x7
0. This rank-1, order-7,

dimension-10, and symmetric tensor T0 will be fixed as our target. Define the unit

tensor B :=
∑5
i=1 x7

i

‖
∑5
i=1 x7

i ‖F
which generically is of rank 5 [50]. We perturb T0 via an
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Figure 2.3: History of monotone convergence and existence of multiple best rank-1 approx-

imations.

additive noise of the form

Tσ = T0 + σB

where σ ∈ [0, 2] signifies the magnitude of the noise. By gradually increasing the

strength of perturbation, we compute the rank-1 approximation tensor T σ of Tσ by

Algorithm 3. The noise level ‖Tσ−T0‖F = σ is low relative to ‖T0‖F , but the added

noise certainly disrupts the rank. Our goal is to compare the difference between T σ

and the original T0 as well as the computed generalized Rayleigh quotient µ(T σ).

Plotted in Figure 2.4 are the relative differences, showing that the computed rank-1

tensor T σ is a reasonable approximation to T0, but the discretion is large enough to

suggest that it is not recovering T0 exactly. It is interesting to note that, despite of

the high nonlinearity involved, the quantities |µ(T σ) − µ(T0)| and ‖T σ − T0‖F are

almost linearly in σ.
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Chapter 3
Non-Symmetric Best Rank-1

Approximation

3.1 Introduction

Finding the best rank-1 approximation to a generic tensor is similar to the sym-

metric case in Chapter 2 which is to determine unit vectors u(`) ∈ RI` , ` = 1, . . . k,

and a scalar λ ∈ R such that ∥∥∥T − λu(1)⊗. . .⊗u(k)
∥∥∥2

F
(3.1)

is minimized for a given generic tensor T ∈ RI1×...×Ik . For any fixed unit vectors

u(1), . . . ,u(k), the optimal value of λ for (3.1) is given precisely by the length of the

projection of the ”vector” T onto the direction of the ”unit vector”
⊗k

`=1 u(`) ∈

RI1×I2×...×Ik , i.e.,

λ = λ(u(1), . . . ,u(k)) = 〈T,
k⊗
`=1

u(`)〉. (3.2)

Thus, minimizing the orthogonal component of T , as is desired in (3.1), is equivalent

to maximizing the length |λ| of the parallel component. In [197], the expression (3.2)

is called the generalized Rayleigh quotient of T relative to {u(1), . . . ,u(k)}. Switching

the signs of the variables u(`) if necessary, we may restrict our attention without loss

of generality to the case λ > 0 only.

43
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3.1.1 Summary

This chapter is not concerned about how fast the different algorithms perform,

nor what quality they achieve. Rather, we are curious about the more fundamental

question of whether the iteration converges at all. Recall that the convergence theory

for the ALS method was established much later than the method had been put into

practice [52,179,189]. A similar concern is raised for the SVD-based algorithm — the

convergence of the generalized Rayleigh quotients is obvious, but the convergence

analysis for the iterates themselves has been elusive in the literature [75, Page 947].

In this chapter, we provide a rigorous mathematical proof for the convergence of

iterates from a specific SVD-based algorithm, which thus complements the theory.

We learn recently that an independent work in the report [193] also investigates

the convergence theory by using the  Lojasiewicz gradient inequality [44, 132, 133].

Indeed, we have employed a similar technique in proving the global convergence of

the ALS method in [189]. The tactics we develop in this chapter for the SVD-based

algorithm are using an entirely different approach. Our approach relies only on the

continuity of singular vectors and real analysis, which, in our opinion, is much more

straightforward.

3.1.2 Outline of the chapter

This chapter is organized as follows. We begin with a brief review of the basic

operation in Section 3.2 to prepare for the discussion. We describe two variants of

SVD-based algorithms in Section 3.3. The difference is at where the SVD is to be

applied. Our main result is presented in Section 3.4 where we explain the meaning

of a tensor being generic and argue the convergence for the most basic algorithm.

Finally, though it is not the main objective of this chapter, we carry out some

exploratory experiments in Section 3.5 to compare performance between proposed

and other types of SVD-based algorithms.
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3.2 Basics

We briefly review some notations in section 2.2 for later useage in this chapter.

Given a fixed partitioning JkK = α ∪ β, we shall regard an order-k tensor T ∈

RI1×...×Ik as a ”matrix representation” of a linear operator mapping order-s tensors

to order-t tensors [189]. Specifically, we identify T with the linear map

Tβ : RIα1×...×Iαs → RIβ1×...×Iβt , (3.3)

such that for any S ∈ RIα1×...×Iαs , we have

Tβ(S) := T~β S = [〈τ[:|`1,...,`t], S〉] ∈ RIβ1×...×Iβt (3.4)

where

〈τ[:|`1,...,`t], S〉 :=

Iα1∑
i1=1

. . .

Iαs∑
is=1

τ[i1,...,is|`1,...,`t]si1,...,is (3.5)

is the Frobenius inner product generalized to multi-dimensional arrays. The β-

product defined by (3.4) is a natural generalization of the usual matrix-vector mul-

tiplication in the sense that if an order-2 tensor T ∈ Rm×n is regarded as a matrix,

and if the column is identified by the pointer α = {1} and the row by β = {2} so

that τij = τ
({2},{1})
[i|j] , then with respect to given column vectors z ∈ Rn and y ∈ Rm

we can write 
Tz = T~2 z,

T>y = T~1 y.

(3.6)

This notation is handy in our convergence analysis later.

Mode products. For any matrix M = [mtj] ∈ Rγ×Id , the mode-d matrix

product 1 is defined to be [14,114]

P = T ×dM =

[〈
τ

({d},{d}C)
[:|J ] ,m

(1,2)
[t|:]

〉]
∈ RI1×...×Id−1×γ×Id+1×...×Ik , (3.7)

that is,

p
({d},{d}C)
[t|J ] = pj1,...,jd−1,t,jd+1,...jk :=

Id∑
`=1

mt,`τj1,...,jd−1,`,jd+1,...jk . (3.8)

1Given a vector v ∈ RId , the so called mode-d vector product, denoted by T×dv, is equal to

T ~{d}C v which is in RI1×Id−1×Id+1×...×Ik .
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We should carefully differentiate β-product ~β from this d-mode product ×d. First,

notice that the d-mode product of a tensor with a matrix maintains the same order of

the original tensor, but the β-product reduces the order from k = s+ t to t. Second,

notice that the d-mode product of a tensor with a vector is indeed a contraction.

When S is of the form S = u(1)⊗. . .⊗u(s), then

(T~β S)`1,...,`t =

Iα1∑
i1=1

. . .

Iαs∑
is=1

τ[i1,...,is|`1,...,`t]u
(1)
i1
. . . u

(s)
is

= T ×α1 u(1)×α2 u(2) . . .×αs u(s).

However, we are not aware of a consistent way to define the d-mode product when

S is a general order-s tensor.

The following basic facts will be used in the subsequent discussion.

Lemma 3.2.1. Given a general tensor T ∈ RI1×I2×...×Ik , a partitioning JkK = α∪β,

and vectors u(`) ∈ RI`, ` = 1, . . . , k, then it holds that

〈T,
k⊗
`=1

u(`)〉 = 〈T~β

s⊗
i=1

u(αi),
t⊗

j=1

u(βj)〉. (3.9)

Lemma 3.2.2. Given a general tensor T ∈ RI1×I2×...×Ik , arbitrary vectors u(αi) ∈

RIαi , i ∈ Jk − 2K, v ∈ RIβ2 , and w ∈ RIβ1 , then

(T~{β1,β2}

k−2⊗
i=1

u(αi))~β1 v = (T~{β1,αj}

j−1⊗
i=1

u(αi)⊗v⊗
k−2⊗
i=j+1

u(αi))~β1 u(αj)(3.10)

(T~{β1,β2}

k−2⊗
i=1

u(αi))~β2 w = (T~{αj ,β2}

j−1⊗
i=1

u(αi)⊗w⊗
k−2⊗
i=j+1

u(αi))~β2 u(αj)(3.11)

for any j ∈ Jk − 2K.

Then we restate Lemma 2.2.6 and Lemma 2.3.1 here as they are critical lemmas

for proving the convergence.

Lemma 3.2.3. [140, Lemma 4.10] Assume that a∗ is an isolated accumulation

point of a sequence {ak} such that for every subsequence {akj} converging to a∗,

there is an infinite subsequence {akji} such that |akji+1 − akji | → 0. Then the whole

sequence {ak} converges to a∗.
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Lemma 3.2.4. [70] Given a matrix A ∈ Rm×n, then the global maximum of the

generalized Rayleigh quotient

max
y ∈ Rm, ‖y‖ = 1

z ∈ Rn, ‖z‖ = 1

y>Az (3.12)

is precisely the largest singular value σ1 of A, where the global maximizer (y1, z1)

consists of precisely the corresponding left and right singular vectors. The best rank-1

approximation to A is given by σ1y1z
>
1 .

3.3 SVD-based best rank-1 approximation

We now investigate a possible application of the singular value decomposition

(SVD) to the best rank-1 approximation of a generic tensor. We shall explain the

kind of generic property we need in the context. Our goal is to achieve the best

rank-1 approximation by improving two components a time via the SVD.

3.3.1 SVD certification

Suppose that λ
⊗k

`=1 u(`) is the best rank-1 approximation to a given order-k

tensor T . By (3.2), the generalized Rayleigh quotient λ = 〈T,
⊗k

`=1 u(`)〉 is positive

and maximal. Consider an arbitrary partitioning JkK = α ∪ β with the cardinality

|β| = 2. By Lemma 3.2.1, we can write

λ = 〈T~β

k−2⊗
i=1

u(αi),

2⊗
j=1

u(βj)〉.

The product Cβ := T~β

⊗k−2
i=1 u(αi) is a matrix in RIβ1×Iβ2 . Since λ is the max-

imal generalized Rayleigh quotient, by Lemma 3.2.4, we conclude that u(β1) and

u(β2) must be the left and the right singular vectors associated with the largest sin-

gular value λ of Cβ for any β. This is the SVD certification of the best rank-1

approximation to a given tensor T .
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We are thus motivated to formulate an SVD-based approach to calculate the

best rank-1 approximation by iterations. Depending on the choice of β which dic-

tates where the certification is to be checked, the approach may appear in dif-

ferent variants. For order-4 tensors, for example, only the two pairs β = (1, 2)

and (3, 4) are alternatingly checked in [193], whereas all six combinations in the

order β = (1, 2), (3, 4), (1, 3), (2, 4), (1, 4), (2, 3) are checked in [75]. We propose

two alternatives. In Algorithm 1, we circulate through k pairs of β in the order

(1, 2), (2, 3), . . . , (k − 1, k) and (1, k). In Algorithm 2, we propose a random choice

of β = (σk−1, σk) where σ is an arbitrary permutation of JkK. We do not think that

there is a significant difference in the performance among the variants, but the true

verdict is yet to be further investigated. In all algorithms, the most fundamental

concern is a proof of convergence for generic tensors.

3.3.2 Algorithm description

The most basic SVD-based approach is outlined in Algorithm 5. Two types of

dynamics are involved in this and all other algorithms. One is the dynamics of the

objective values, of which the analysis is straightforward. The other is the dynamics

of the iterates, which is much harder to characterize. We will discuss the convergence

in the next section.

To convey the idea, we adopt the subscript [p] in Algorithm 5 to indicate the

quantity at the p-th iteration. Each sweep of p at Line 1 in Algorithm 5 involves k

pairs of β ranging circularly from (1, 2), (2, 3), . . . , (k − 1, k) and (1, k). It is tricky

that last pair has to be in the order (1, k), as the reversal (k, 1) will not work.

Each u
(`)
[p+1] is updated twice. The first updates for ` = 2, . . . , k, denoted by û

(`)
[p+1] at

Line 10, are not essential and can be completely removed from the algorithm, but its

presence helps bridge the monotonicity. The update û
(1)
[p+1] is temporarily overwritten

as u
(1)
[p+1] at Line 9 for the computation of C

(`)
[p] at Line 4 for ` = 2, . . . , k−1, but will

be updated again at Line 17. The switch of signs at Line 7 conditioned upon Line 6 is

to ensure that the iterates are aligned in one direction and thus avoid discontinuous
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Algorithm 5 (Best rank-1 approximation via SVD updating with cyclic progres-

sion.)

Input: An order-k tensor T ∈ RI1×...×Ik and k starting unit vectors u
(`)
[0] ∈ RI` ,

` ∈ JkK

Output: A local best rank-1 approximation to T

1: for p = 0, 1, · · · , do

2: for ` = 1, 2, · · · , k − 1, do

3: β` = (`, `+ 1)

4: C
(`)
[p] = T~β`

⊗`−1
i=1 u

(i)
[p+1]⊗

⊗k
i=`+2 u

(i)
[p] {A matrix of size I` × I`+1}

5: [u, s,v] = svds(C
(`)
[p] , 1) {Dominant singular value triplet via Matlab

routine svds; assume uniqueness}

6: if u1 < 0 then

7: u = −u,v = −v {Assume the generic case that u1 6= 0; otherwise, use

another entry.}

8: end if

9: u
(`)
[p+1]

:= u {If ` = 1, this is û
(1)
[p+1]; otherwise this is the second update

u
(`)
[p+1], if 2 ≤ ` < k.}

10: û
(`+1)
[p+1]

:= v {Skipping this step will not affect C
(`+1)
[p] at Line 4.}

11: λ
(`)
[p+1]

:= s

12: end for

13: βk = (1, k) {Not (k, 1)!}

14: C
(k)
[p] = T~βk

⊗k−1
i=2 u

(i)
[p+1] {A matrix of size I1 × Ik}

15: [u, s,v] = svds(C
(k)
[p] , 1) {Dominant singular value triplet via Matlab routine

svds; assume uniqueness}

16: u
(k)
[p+1]

:= v {After adjusting the signs of u and v properly as in Line 6.}

17: u
(1)
[p+1]

:= u

18: λ
(k)
[p+1]

:= s

19: end for
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jumps. The continuity of the dominant singular value and the associated singular

vector is critical to convergence. The intermediate values λ
(`)
[p+1] are registered in the

algorithm as well, even though only λ
(k)
[p+1] at the final stage is crucial.

The above algorithm is still alternating in nature, but is different from the alter-

nating least squares (ALS) approach that has been popular for computing the best

rank-1 approximation [50, 109, 197]. The most significant difference is that, since

the dominant singular vector u
(`)
[p+1] and v

(`)
[p+1] of the matrix C

(`)
[p] gives rise to the

absolute maximal value λ
(`)
[p+1] for the functional

g(x,y) := 〈T,
`−1⊗
i=1

u
(i)
[p+1]⊗x⊗y⊗

k⊗
i=`+2

u
(i)
[p]〉 (3.13)

among all possible vectors x and y, the mechanism of updating x and y simulta-

neously in Algorithm 5 is going to increase the generalized Rayleigh quotient faster

than the combination of two applications of ALS approach to x followed by y in

one step, provided that the initial information is the same. The two-in-one gain is

also better than the maximum of updating x or y separately [75, Proposition 4].

We stress that such an advantage happens only when the comparison is made at the

same point. There is no general theory at present to support that the SVD update

will continue to be superior to the power update in the long run, once they depart

toward different directions from the same starting point.

Other than for systematically bookkeeping the progression of β, there is no par-

ticular reason that we have to cycle through the `-loop as is indicated in Algorithm 5.

An alternative way is to shuffle the columns u(1), . . . ,u(k) by a random permutation

σ and generate a matrix C for updating. This randomized procedure is modified at

Line 7 in Algorithm 6. To avoid confusion with data generated from Algorithm 5,

we employ a slightly different notation when describing the progression in this algo-

rithm. For simplicity, we always choose to update the last two vectors u(σk−1),u(σk)

after the permutation. It is known in probability theory that the expected number of

trials for a permutation to recur is k(k−1)
2

. Nonetheless, by the time that a repetition
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Algorithm 6 (Best rank-1 approximation via SVD updating with randomization.)

Input: An order-k generic tensor T and k starting unit vectors u(1), . . . ,u(k) ∈ Rn

Output: A local best rank-1 approximation to T

1: t← 0

2: λ0 ← 〈T,
⊗k

`=1 u(`)〉

3: repeat

4: t← t+ 1

5: σ ← random permutation of {1, . . . , k}

6: βt ← (σk−1, σk)

7: Ct ← T~βt

⊗k−2
i=1 u(σi)

8: [ut, st,vt] = svds(Ct, 1) {Dominant singular value triplet via Matlab routine

svds, assume uniqueness}

9: if (ut)1 < 0 then

10: u = −ut,v = −vt {Assume the general case that (ut)1 6= 0; otherwise, use

another entry}

11: end if

12: λt ← st

13: u(σk−1) ← ut,u
(σk) ← vt

14: until λt meets convergence criteria

of permutation βt occurs, the vectors u(1), . . . ,u(k) should have been changed. Re-

peating the random permutations sufficiently many times should get the iteration to

move forward. The concern of reiterating with the same matrix Ct at Line 7 should

be nominal. It is interesting to note from our numerical experiments in Section 3.5

that this randomized algorithm turns out to be the most efficient when comparing

with other variants.
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3.4 Convergence analysis

In this section, we analyze the convergence for the above algorithms. First,

because the SVD at each update always selects the dominant singular value and the

corresponding left and right singular vectors, each of the two algorithms enjoys the

property that the corresponding sequence of the generalized Rayleigh quotients is

bounded and monotone increasing. The convergence of the objective values (3.2) is

obvious.

Lemma 3.4.1. The scalars {λ(`)
[p]} generated in Algorithm 5 form a monotone con-

vergent sequence for each ` = 1, . . . , k and all converge to the same value.

Lemma 3.4.2. The scalars {λt} generated in Algorithm 6 form a monotone con-

vergent sequence.

It remains to prove the convergence of iterates themselves under generic con-

ditions [193, Assumption 3.1]. What happens is that there are cases where the

iterates do not converge [114], but these cases form algebraic varieties, i.e., zeros of

a certain polynomial system, that are of measure zero in the space of general ten-

sors. The complement of this zero measure set is open and dense under the Zariski

topology [164], which is what we referred to as generic. To avoid using jargons from

algebraic geometry, we shall be more specific in the following argument when generic

properties are required.

We learn recently that authors of the report [193] independently prove the con-

vergence of their variant of an SVD-based algorithm by exploiting the monotone

convergence of values λ
(k)
[p] and λt. Their proof relies on the framework developed

in [10] and utilizes the the  Lojasiewicz gradient inequality. A similar idea has been

employed in our earlier work in [189]. Our contribution in this chapter is a new,

shorter, and more direct proof. In either case, the analysis should fulfill what was

declared as ”we do not have a complete understanding when this will happen”

in [75, Page 947].
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3.4.1 Convergence of Algorithm 5

The two SVD-based algorithms outlined in the proceeding section differ by the

way β is specified. To convey our idea, we first characterize the limiting behavior

of Algorithm 5 where β is changed systematically in a cyclic pattern. Observe that

for each fixed `, because ‖u(`)
[p]‖2 = 1 for all p, the collection {u(`)

[p]} must have a

convergent subsequence. There are only finitely many `. Selecting a subsequence

of a subsequence if necessary, we can find a common subset {pj} of nonnegative

integers so that {u(`)
[pj ]
} converges simultaneously for all ` ∈ JkK.

Lemma 3.4.3. If subsequences {u(`)
[pj ]
} generated by Algorithm 5 converge simulta-

neously for all ` ∈ JkK, then so do subsequences {C(`)
[pj ]
} and {u(`)

[pj+1]}.

Proof. The simultaneous convergence of {u(`)
[pj ]
} for ` = 3, . . . , k implies that the

subsequence {C(1)
[pj ]
} converges. By the continuity inherited in the SVD [29, 192],

the subsequence of the left singular vectors {û(1)
[pj+1]} of C

(1)
[pj ]

converges also since

we have already aligned them in one direction. But then by definition, {C(2)
[pj ]
}

converges and, thus, so does {u(2)
[pj+1]}. We can repeat this argument by cycling

through the `-loop in Algorithm 5. At the end, the matrices {C(k)
[pj ]
} together with the

corresponding left singular vectors {u(1)
[pj+1]} and the right singular vectors {u(k)

[pj+1]}

must also converge.

Denote the respective limit points of the above subsequences by

limj→∞ u
(`)
[pj ]

= u
(`)
\ ,

limj→∞C
(`)
[pj ]

= C(`),

limj→∞ û
(`)
[pj+1] = û

(`)
] ,

limj→∞ u
(`)
[pj+1] = u

(`)
] ,

` ∈ JkK, (3.14)

where the subscript ] is a handy way to distinguish, at least for now, that the limit

points corresponding to the subsequence [pj+1] might be different from those, denoted

by the subscript \, of the original subsequence [pj ]. By the way C
(`)
[pj ]

is defined, it
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follows that

C(`) = T~β` (
`−1⊗
i=1

u
(i)
] ⊗

k⊗
i=`+2

u
(i)
\ ). (3.15)

We already point out in Lemma 3.4.1 that all matrices C(`), ` ∈ JkK share the

same dominant singular value λ̃. We now explore the relationships among dominant

singular vectors of all C(`) matrices.

With respect to a given convergent subsequence generated by Algorithm 5, the

following result asserts that all dominant (left) singular vectors are the same.

Lemma 3.4.4. Assume that T is such that, with respect to the given simultaneously

convergent subsequences {u(`)
[pj ]
} generated by Algorithm 5, the dominant singular

value λ̃ of the corresponding limit point C(`) ∈ RI`×I`+1 defined in (3.14) is simple

for all ` ∈ JkK. Then the limit points defined in (3.14) satisfy the relationships that
u

(`)
\ = û

(`)
] = u

(`)
] ,

C(`) = T~β` (
⊗`−1

i=1 u
(i)
\ ⊗

⊗k
i=`+2 u

(i)
\ ),

` ∈ JkK. (3.16)

Proof. For convenience, we employ the abbreviations ~1 and ~2 to indicate, respec-

tively, the row-matrix and matrix-column multiplications already delineated in (3.6).

In reality, it must be noted that we are dealing with multiplications of matrices and

vectors of different sizes.

By using Lemma 3.2.2, we first observe the equalities

C
(`)
[pj ]

~1 u
(`)
[pj+1] = λ

(`)
[pj+1]û

(`+1)
[pj+1]

= (T~β` (û
(1)
[pj+1]⊗

`−1⊗
i=2

u
(i)
[pj+1]⊗

k⊗
i=`+2

u
(i)
[pj ]

))~1 u
(`)
[pj+1]

= (T~β`+1
(û

(1)
[pj+1]⊗

⊗̀
i=2

u
(i)
[pj+1]⊗

k⊗
i=`+3

u
(i)
[pj ]

))~2 u
(`+2)
[pj ]

= C
(`+1)
[pj ]

~2 u
(`+2)
[pj ]

, ` = 2 . . . , k − 2. (3.17)

Similarly,

C
(1)
[pj ]

~1 û
(1)
[pj+1] = λ

(1)
[pj+1]û

(2)
[pj+1]
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= (T~β1
(

k⊗
i=3

u
(i)
[pj ]

))~1 û
(1)
[pj+1]

= (T~β2
(û

(1)
[pj+1]⊗

k⊗
i=4

u
(i)
[pj ]

))~2 u
(3)
[pj ]

= C
(2)
[pj ]

~2 u
(3)
[pj ]
. (3.18)

The special ”twist” at Lines 16-17 with βk = (1, k) in Algorithm 5 allows us to have

the identities

C
(k)
[pj−1]~2 u

(k)
[pj ]

= λ
(k)
[pj ]

u
(1)
[pj ]

= (T~βk (
k−1⊗
i=2

u
(i)
[pj ]

))~2 u
(k)
[pj ]

= (T~β1
(

k⊗
i=3

u
(i)
[pj ]

))~2 u
(2)
[pj ]

= C
(1)
[pj ]

~2 u
(2)
[pj ]
. (3.19)

Finally, we also have

C
(k−1)
[pj ]

~1 u
(k−1)
[pj+1] = λ

(k−1)
[pj+1]û

(k)
[pj+1]

= (T~βk−1
(û

(1)
[pj+1]⊗

k−2⊗
i=2

u
(i)
[pj+1]))~1 u

(k−1)
[pj+1]

= (T~βk (
k−1⊗
i=2

u
(i)
[pj+1]))~1 û

(1)
[pj+1] = C

(k)
[pj ]

~1 û
(1)
[pj+1]. (3.20)

Taking the limits, then it follows by construction and continuity that we have the

relationships:

λ̃u
(1)
\ = C(1)~2 u

(2)
\ , (by (3.19))

C(1)~1 û
(1)
] = λ̃û

(2)
] = C(2)~2 u

(3)
\ , (by (3.18))

C(`)~1 u
(`)
] = λ̃û

(`+1)
] = C(`+1)~2 u

(`+2)
\ , ` = 2, . . . , k − 2, (by (3.17))

C(k−1) ~1 u
(k−1)
] = λ̃û

(k)
] = C(k) ~1 û

(1)
] , (by (3.20))

C(k) ~1 u
(1)
] = λ̃u

(k)
] . (by Lines 16-17 in Algorithm 5)

By assumption, the dominant λ̃ is simple and the corresponding singular vector

is unique up to a sign change. However, because in Lines 6 to 8 of Algorithm 5 we

have already required the first entry of the dominant singular vector to be positive,
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such a sign change does not exist. The best rank-1 approximation to the matrix C(`)

therefore is unique. Recursively, the above relationships imply that the best rank-1

approximation to the matrix C(`) can be expressed in two ways:
C(1) ≈ λ̃u

(1)
\ ⊗ u

(2)
\ = λ̃û

(1)
] ⊗ û

(2)
] ,

C(`) ≈ λ̃û
(`)
] ⊗ u

(`+1)
\ = λ̃u

(`)
] ⊗ û

(`+1)
] , ` = 2, . . . , k − 1,

C(k) ≈ λ̃û
(1)
] ⊗ û

(k)
] = λ̃u

(1)
] ⊗ u

(k)
] .

(3.21)

By the uniqueness of dominant singular vectors for C(`) for each ` ∈ JkK, the assertion

(3.16) follows from (3.21).

The question is when the assumption imposed on T in Lemma 3.4.4 will hold.

Specifically, let Ω denote the set of tensor T ∈ RI1×I2×...×Ik where there exists a

convergent subsequence {u(`)
[pj ]
} such that the dominant singular value of the limit

point C(`) of the corresponding {C(`)
[pj ]
} ⊂ RI`×I`+1 is not simple. How large is the set

Ω?

Consider the fact that symmetric matrices with multiple eigenvalues form an

algebraic variety of codimension two [56]. For almost all matrices, therefore, the

largest singular value is simple. For one particular limit point C(`) to have multiple

dominant singular values, the subsequence {C(`)
[pj ]
} that leads to it must approach

arbitrarily close to that variety of matrices with multiple dominant singular values.

But {C(`)
[pj ]
} is defined in a specific algebraic way as in Line 4 of Algorithm 5. Back-

ward tracing, the occurrence of C(`) with multiple dominant singular values depends

on the set {u(i)
[0] , i ∈ JkK} of unit starting vectors, the particular subsequence {[pj ]}

selected, and the underlying T . Any change of the starting vectors could alter the

course of iteration. The choice of a different subsequence could lead to a different

limit point. When both changes do not obliterate the appearance of dominant sin-

gular values, the tensor T itself must be something special. We thus conjecture that

the set Ω should not be generic. Such a reasoning, of course, does not constitute a

mathematical proof to support its genericity because we do not know of an analytic

way to quantify a generic T . Thus, at the moment, we can only call it an assumption
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to be satisfied. Note that Lemma 3.4.4 is subsequence dependent. Its conclusion is

with respect to only one particularly given convergent subsequence. The following

condition is much stronger than what we need in Lemma 3.4.4.

Condition A. We say that a given order-k tensor T satisfies Condition A if

for every convergent subsequences {u(`)
[pj ]
} generated by Algorithm 5 and the corre-

sponding subsequence {C(`)
[pj ]
}, ` ∈ JkK, the dominant singular value λ̃ of the limit

point C(`) ∈ RI`×I`+1 defined in (3.14) is simple for all ` ∈ JkK.

We conjecture that Condition A holds for almost all order-k tensors. Even if

not, keep in mind that it will be considered together with the Condition B which is

generic and will be described below.

By the way the iteration is defined, and if Lemma 3.4.4 holds, any stationary

point of Algorithm 5 necessarily satisfies the system of equations

T~` (
`−1⊗
i=1

u(i)⊗
k⊗

i=`+1

u(i)) = 〈T,
k⊗
`=1

u(`)〉u(`), ` ∈ JkK. (3.22)

The equation (3.22) is a polynomial system in the unknowns (u(1), . . . ,u(k)) ∈ RI1×

. . . × RIk with leading coefficients from entries of T . By the theory of parameter

continuation [164, Theorem 7.1.1], we know that for almost all tensor T ∈ CI1×...×Ik ,

except for an affine algebraic subset of codimension one in CI1 × . . . × CIk , the

solutions to (3.22) are isolated. Together with the fact that R is dense in C under

the Zariski topology, the real solutions are also isolated.

Condition B. We say that a given order-k tensor T satisfies Condition B if the

real solutions to the corresponding polynomial system (3.22) are isolated.

Lemma 3.4.5. For almost all tensors T , the accumulation points of the sequence

{ut} generated by Algorithm 5 and Algorithm 6 are geometrically isolated.

Finally, we are ready to claim our major result which serves as the theoretical ba-

sis complementing the SVD-based Algorithm 5. We say that a tensor T ∈ RI1×...×Ik

is generic if it satisfies both generic conditions A and B. The non-generic tensors

must reside on some algebraic varieties and, hence, are of measure zero.
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Theorem 3.4.1. For almost all order-k tensors T satisfying Condition A and for

arbitrary starting points, the vector sequence {(u(1)
[p] , . . . ,u

(k)
[p] )} generated by Algo-

rithm 5 converges to a local maximizer of the generalized Rayleigh quotient λ(u(1), . . . ,u(k))

defined in (3.2).

Proof. Let {u(`)
[pj ]
} be any simultaneously convergent subsequences for ` ∈ JkK. By

Lemma 3.4.3, the subsequences {u(`)
[pj+1]} also converge. Indeed, by Lemma 3.4.4,

both subsequences converge to the same limit point for all ` ∈ JkK. Thus ‖u(`)
[pj+1] −

u
(`)
[pj ]
‖ → 0. On the other hand, by Lemma 3.4.5 we assume that the limit point is

geometrically isolated. The convergence of the entire sequence {u(`)
[pj ]
} to the same

limit point follows from Lemma 3.2.3.

3.4.2 Convergence of Algorithm 6

Now we argue the convergence of Algorithm 6 where β is changed randomly. For

clarity, enumerate the column vectors at the end of Line 13 by
{

u
(1)
t , . . . ,u

(k)
t

}
. By

construction, for t ≥ 1, only two of these vectors are updated by the dominant left

and right singular vector of Ct while others remain the same. Now we establish the

following result.

Theorem 3.4.2. For almost all order-k tensors T and arbitrary starting points,

the vector sequence {(u(1)
t , . . . ,u

(k)
t )} generated by Algorithm 6 converges to a local

maximizer of the generalized Rayleigh quotient defined in (3.2).

Proof. Suppose that {u(`)
ti } is an arbitrary subsequence converging to u(`) simultane-

ously for ` ∈ JkK. Suppose also by Lemma 3.4.5 that the limit points u(`), ` ∈ JkK, are

geometrically isolated. By construction, i.e., Line 7 in Algorithm 6, the subsequence

{C(`)
ti+1} of matrices converges. By continuity, the subsequence

{
u

(`)
ti+1

}
must also

converge to u(`). In particular,
∥∥∥u(`)

ti+1 − u
(`)
ti

∥∥∥ → 0. The condition in Lemma 3.2.3

therefore is satisfied. It follows that the whole sequence {u(`)
t } converges to u(`).

We remark that in our recent work for symmetric tensors [79], we have also

proposed an SVD-based algorithm by using a mechanism of random update similar
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Figure 3.1: Comparison of CPU time among different methods.

to that adopted in Algorithm 6. The analysis there, in order to maintain symmetry,

is much more involved than what we have shown above for non-symmetric tensors.

3.5 Numerical experiments

The idea of updating two factors simultaneously by taking advantage of the

two-in-one global optimization property of SVD is appealing. Thus we investigate

and offer a theoretical justification that the two variants of SVD-based methods de-

scribed in this chapter indeed converge. Two questions naturally arise. First, is there

a significant difference in performance among different SVD-based algorithms? Sec-

ond, is the SVD-based algorithm always superior to the conventional ALS method?

Although rigorous numerical testing is not the main objective of this chapter, we

carry out some preliminary experiments with the hope of partially satisfying our

own curiosity.

Experiment 1. To our knowledge, there are at least five variants of SVD-

based algorithms. These are the ASVD [75], the MASVD [75], the block SVD

(BSVD) [193], as well as Algorithm 5 and Algorithm 6 introduced in this manuscript.

We are interesting in comparing the CPU time required for the iterates to meet the

same stopping criteria – the iteration terminates automatically when the generalized

Rayleigh quotients do not vary more than the tolerance 10−5 in three consecutive
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iterations. As a general reference point, also included is the performance of the

conventional ALS method. To check the scalability, we consider the case where

all factors are of same dimension and vary the size of problem as n = 2p where

we choose p = 5, . . . , 8 for k = 3 and p = 3, . . . , 6 for k = 4. Each case of p

is repeatedly tested 20 times with random starting unit vectors. We plot average

running time in Figure 3.1. It should be pointed out that even from the same

starting points, different methods may converge to different limit points because

they involve different dynamics. Regardless, the comparison is based on the same

starting points subject to the same stopping criteria for convergence.

For problems of modest sizes, e.g., n = 26 for k = 3 and n = 24 for k = 4,

the cost of SVD computation outruns that of the high-order power method. Thus

the ALS method uses less time at these modest dimensions which amounts to a full

and dense tensor with approximately 216 to 218 entries. For odd order tensors, the

block structure in the BSVD necessarily updates one vector via the ALS algorithm,

which slows down its convergence. Thus we see that for order-3 tensors, Algorithm 6

outperforms the BSVD when p > 6. For order-4 tensors, both Algorithm 6 and the

BSVD method in [193] update two distinct vectors simultaneously, thus are about

equally fast. On the other hand, the cyclic progression of Algorithm 5 updates each

factor twice but only the second time counts. So, it literately updates one factor a

time. As such, it should always be less effective than Algorithm 6. The MASVD

requires multiple ASVD calculation, so it is more expensive than ASVD. The ASVD

checks through all possible permutations, so its performance is about the same as

that of the Algorithm 5.

Experiment 2. In this experiment, we want to assess the quality of the iterates

generated by the SVD-based method and the ALS method. To fix the idea, we

consider a given order-4 tensor with n = 26. We use the ratio λSVD−λALS
‖T‖ as the

measurement of quality. The idea is that the larger the generalized Rayleigh quo-

tient, the better the quality of the iteration. A positive ratio means that the SVD

method is improving better than the ALS method, and vice versa. We perform
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Figure 3.2: Comparison of quality between SVD and ALS.

the iteration 10, 50, and 100 times for each of the 20 randomly generated initial

vectors for the same tensor and measure the ratios. These iteration steps are far

away from convergence, but speak of an important trend. Plotted in Figure 3.2 are

the histograms of ratios in 10 bins, when the comparison is made with respect to

Algorithm 5 and Algorithm 6, respectively. Note that in the initial 10 iterations,

the (dark blue) lobe of ratios leans toward the right of 0, indicating that the SVD

method gives better improvement than the ALS method. However, when sufficiently

many iterations are taken, the statistics in Figure 3.2 clearly shows that the (yellow)

lobe shifts toward the left, indicating that the ALS method is gradually catching up

the quality. In certain case, the ratio is negative, indicating that the ALS method

might lead to a better local optimum eventually, although we have not seen the ulti-

mate convergence yet. Comparing the two histograms in Figure 3.2, we also notice

that Algorithm 6 generally keeps more positive ratios than Algorithm 5 does.



Chapter 4
Orthogonal Low Rank Approximation

4.1 Orthogonal low rank approximation

A tensor of the form
⊗k

i=1 u(i) = u(1)⊗· · ·⊗u(k) :=
[
u

(1)
i1
· · ·u(k)

ik

]
where elements

are the products of entries from vectors u(i) ∈ RIi , i = 1, . . . , k also referred as

components is said to be of rank one [110].

For a given tensor T ∈ RI1×...×Ik , low rank approximation studied in this chapter

is to minimize ∥∥∥∥T − R∑
r=1

λr

k⊗
i=1

u(i)
r︸ ︷︷ ︸

Hr

∥∥∥∥2

F

, (4.1)

subject to the mutual orthogonality condition that

〈Hr1 , Hr2〉 =
k∏
i=1

〈
u(i)
r1
,u(i)

r2

〉
= δr1r2 , for all 1 ≤ r1, r2 ≤ R, (4.2)

where u
(i)
r are unit vectors for i = 1, . . . , k, r = 1, . . . R. To satisfy the constraints

(4.2), one of the following orthogonality conditions has been imposed:

1. Complete orthogonality [40,110,114]: For all i = 1, . . . , k, and 1 ≤ r1 6= r2 ≤

R, 〈u(i)
r1 ,u

(i)
r1 〉 = 1, and 〈u(i)

r1 ,u
(i)
r2 〉 = 0.

2. Orthogonality: For all i = 1, . . . , k, and 1 ≤ r ≤ R, 〈u(i)
r ,u

(i)
r 〉 = 1, and for

62
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some 1 ≤ i1 < . . . < iµ ≤ k,〈
u(i1)
r1
,u(i1)

r2

〉
= 0, . . . ,

〈
u(iµ)
r1
,u(iµ)

r2

〉
= 0, ∀1 ≤ r1 6= r2 ≤ R.

3. Semi-orthogonality [40, 166, 190]: For all i = 1, . . . , k, and 1 ≤ r ≤ R,

〈u(i)
r ,u

(i)
r 〉 = 1 and there is one i such that

〈u(i)
r1
,u(i)

r2
〉 = 0, ∀1 ≤ r1 6= r2 ≤ R.

As a result, the low rank approximation problem (4.1) with the constraints (4.2)

can be classified as

1. Completely orthogonal low rank approximation:
min

∥∥∥∥T −∑R
r=1 λr

⊗k
i=1 u

(i)
r

∥∥∥∥2

F

,

subject to the complete orthogonality constraint.

(4.3)

2. Orthogonal low rank approximation:
min

∥∥∥∥T −∑R
r=1 λr

⊗k
i=1 u

(i)
r

∥∥∥∥2

F

,

subject to orthogonality constraint.

(4.4)

3. Semi-orthogonal low rank approximation:
min

∥∥∥∥T −∑R
r=1 λr

⊗k
i=1 u

(i)
r

∥∥∥∥2

F

,

subject to the semi− orthogonality constraint.

(4.5)

Completely orthogonal low rank approximation and semi-orthogonal low rank

approximation of tensors have been studied, for example, in [40, 157, 190]. The

”workhorse” algorithm for rank-1 approximation and semi-orthogonal low rank ap-

proximation of tensor has been alternating least squares (ALS) method which has

been proved to be convergence globally for almost all tensors in [189, 190]. The

completely orthogonal low rank approximation of tensors is similar to the truncated
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SVD of matrices. Obviously, complete orthogonality implies semi-orthogonality,

but the converse does not hold. Orthogonality is just a bridge between complete

orthogonality and semi-orthogonality since orthogonality is exactly the complete

orthogonality if µ = k and it reduces to semi-orthogonality if µ = 1. The more

restricted constraint by adding extra orthogonal factor matrix might be useful for

other purpose.

Orthogonal low rank approximation of tensors has been highlighted in [190] and

its ALS has been considered for this question. It has been pointed in [190] that ”the

technique employed in the preceding section might not be immediately generalizable

because we need to prove the convergence of both sequences {v(k−1)
r,[p] } and {v(k)

r,[p]}

simultaneously. More study is needed”. Furthermore, it has also been addressed

in [190] that ”the question of more than one semi-orthogonal factor matrix, except

for the case of complete orthogonality, remains open”.

Since orthogonal low rank approximation is an open question addressed in [189]

and it includes the completely orthogonal low rank approximation and semi-orthogonal

low rank approximation as two special cases, we focus on this open question, i.e.,

we study orthogonal low rank approximation of tensors in this chapter.

Because of the constraints (4.2), the base tensors Hr (r = 1, . . . , R) are mutu-

ally orthonormal and the expression for the optimal scales λr in (4.1) can also be

interpreted as the length of the projection of the ”vector” T onto the ”unit vector”

Hr under the Frobenius inner product, and are necessarily given by

λr = λr

(
u(1)
r . . . ,u(k)

r

)
=

〈
T,

k⊗
i=1

u(i)
r

〉
r = 1, . . . , R. (4.6)

Thus, the orthogonal low rank approximation problem (4.4) can be reformulated as

• Orthogonal low rank approximation:
max

∑R
r=1 λ

2
r,

subject to the orthogonality constraint.

(4.7)
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In this chapter, for orthogonal low rank approximation problem (4.4) (i.e., (4.7)),

we assume without loss of generality that〈
u(k−µ+1)
r1

,u(k−µ+1)
r2

〉
= 0, . . . ,

〈
u(k)
r1
,u(k)

r2

〉
= 0, ∀1 ≤ r1 6= r2 ≤ R. (4.8)

4.2 Summary

In this chapter, we focus on the orthogonal low rank approximation of ten-

sors. Inspired by the SVD-based algorithms for the rank-1 approximation [78, 79]

and algorithm in [40], we develop an SVD-based algorithm for orthogonal low rank

approximation of tensors, which updates two factors simultaneously and maintain

the required orthogonality conditions by means of the polar decomposition. The

convergence of our SVD-based algorithm for both objective function and iterates

themselves is established. Moreover, numerical experiments have been presented to

illustrate the performances of our SVD-based algorithm.

4.2.1 Outline of the chapter

The rest of this chapter is organized as follows: some preliminaries including the

basic definitions and notions of tensors are provided in Section 4.3. Then our SVD-

based algorithm is developed in Section 4.4, and its global convergence is analyzed

in Section 4.5. Numerical experiments are presented in Section 4.6.

4.3 Basics

The following lemma is essentially the well known polar decomposition [89, 90,

102] which reveals the trace maximizing property that will play an important role

for the development in the next section.

Lemma 4.3.1. Let matrix A ∈ Rm×n with m ≥ n have polar decomposition

A = QS,
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where Q ∈ Rm×n is the column orthogonal polar factor and S ∈ Rn×n is the symmet-

ric positive semi-definite factor. Then

Q = arg max
P∈Rm×n, PTP=I

Trace
(
P TA

)
.

Moreover, if A is of full column rank, then Q above is unique.

The next Eckart-Young Lemma provides the mechanism of our SVD-based algo-

rithm in next section for updating two factors simultaneously.

Lemma 4.3.2. [70] Given a matrix A ∈ Rm×n, then the global maximum of the

generalized Rayleigh quotient

max
x ∈ Rm, ‖x‖ = 1

y ∈ Rn, ‖y‖ = 1

〈x, Ay〉 (4.9)

is precisely the largest singular value σ1 of A, where the global maximizer (x, y)

consists of the corresponding left and right singular vectors of A, and thus the best

rank-1 approximation to A is given by σ1x
>y.

We close this section by one more lemma which will be used to prove the con-

vergence of iterates.

Lemma 4.3.3. [79, 140, 198] Let {an} be a bounded sequence of real numbers. If

the accumulation points of the sequence {an} are isolated, and for every subsequence

{akj} converging to a accumulation point a∗ there is an infinite subsequence {akji}

such that |akji+1 − akji | → 0, then the whole sequence {an} converges to a∗.

4.4 Algorithm for Orthogonal Low Rank Approx-

imation

Followed by our previous work [78,79] for the rank-1 tensor approximation using

SVD and [40] for the completely orthogonal low rank tensor approximation, we
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apply the similar ideas to the orthogonal low rank approximation problem (4.7) and

update two factors simultaneously. There is an additional challenge to maintain the

required orthogonality condition in (4.7), we handle this difficulty by means of the

polar decomposition [89].

For any u
(1)
r , . . . ,u

(`)
r ,u

(`+1)
r , . . . ,u

(k)
r , r = 1, . . . , R, it is important to know how

we can update to obtain ”better” ones.

(i) For any 1 ≤ ` ≤ k − µ− 1 and r = 1, 2, . . . , R, let β` = (`, `+ 1) and

C(`)
r = T~β`

 `−1⊗
i=1

u(i)
r ⊗

k⊗
i=`+2

u(i)
r

 .

Denote the dominate left and right singular vectors of C
(`)
r corresponding to its

largest singular value by ũ
(`)
r and ũ

(`+1)
r , respectively. Then by Lemma 4.3.2,

we have

λr =

〈
T,

k⊗
`=1

u(`)
r

〉
=
〈
u(`)
r , C

(`)
r u(`+1)

r

〉
≤ max

xTx=1, yTy=1

〈
x, C(`)

r y
〉

=
〈
ũ(`)
r , C

(`)
r ũ(`+1)

r

〉
= λ̃r.

Obviously, we can update u
(`)
r by ũ

(`)
r and u

(`+1)
r by ũ

(`+1)
r .

(ii) The Lagrangian for the optimization problem (4.7) (i.e., (4.4)) is

L :=
R∑
r=1

λ2
r−

k∑
`=1

R∑
r=1

ρ(`)
r

(〈
u(`)
r , u(`)

r

〉
− 1

)
−

∑
1≤r1<r2≤R

k∑
`=k−µ+1

α(`)
r1r2

〈
u(`)
r1
, u(`)

r2

〉
,

where λr is given by (4.6) and ρ
(`)
r , α

(`)
r1r2 are Lagrange multipliers. According

to [130], the first order optimality condition for a stationary point is to satisfy

λrT~`

 `−1⊗
i=1

u(i)
r ⊗

k⊗
i=`+1

u(i)
r

 = ρ(`)
r u(`)

r , ` = 1, . . . , k − µ, r = 1, . . . , R.

(4.10)
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and

λrT~`

 `−1⊗
i=1

u(i)
r ⊗

k⊗
i=`+1

u(i)
r

 = ρ(`)
r u(`)

r +
∑
r1<r

α
(`)
r1r

2
u(`)
r1

+
∑
r<r2

α
(`)
rr2

2
u(`)
r2
, (4.11)

` = k − µ+ 1, . . . , k, r = 1, . . . , R.

It follows from the orthogonality condition that

ρ(`)
r = λ2

r, ` = 1, . . . , k, r = 1, . . . , R,

and furthermore,

V (`)Λ(`) = U (`)S(`), S(`) is symmetric, ` = k − µ+ 1, . . . , k, (4.12)

where

v(`)
r = T~`

 `−1⊗
i=1

u(i)
r ⊗

k⊗
i=`+1

u(i)
r

 , ` = k − µ+ 1, . . . , k, r = 1, . . . , R,

and

V (`) =

[
v

(`)
1 , · · · ,v(`)

R

]
,

U (`) =

[
u

(`)
1 , · · · ,u(`)

R

]
,

Λ(`) =


λ

(`)
1

. . .

λ
(`)
R

 .

It is from Lemma 4.3.1 and equation (4.12) that we can update U (`) by the

orthogonal polar factor of the matrix V (`)Λ(`): Let the polar decomposition of

V (`)Λ(`) be

V (`)Λ(`) = Ũ (`)S̃(`), ` = k − µ+ 1, . . . , k,

where Ũ (`) is column orthogonal and S̃(`) is symmetric and positive semi-

definite.
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Denote

λ̃(`)
r =

〈
v(`)
r , ũ(`)

r

〉
, ` = k − µ+ 1, . . . , k, r = 1, . . . , R.

We have

R∑
r=1

(λ(`)
r )2 = Trace

(
(U (`))TV (`)Λ(`)

)
≤ Trace

(
(Ũ (`))TV (`)Λ(`)

)
=

R∑
r=1

λ̃(`)
r λ

(`)
r ,

` = k − µ+ 1, . . . , k.

Consequently, we have by using the Cauchy-Schwarz inequality that

R∑
r=1

(λ(`)
r )2 ≤

R∑
r=1

(λ̃(`)
r )2, ` = k − µ+ 1, . . . , k, (4.13)

and the equality holds if and only if

λ(`)
r = λ̃(`)

r , ` = k − µ+ 1, . . . , k, r = 1, . . . , R.

Hence, we update U (`) by Ũ (`) for ` = k − µ+ 1, . . . , k.

To update two factors simultaneously as possible, we have to consider if k−µ is

even or odd:

• For the case that k − µ is even, we can update u
(`)
r and u

(`+1)
r simultaneously

by SVDs for ` = 1, 3, . . . , k − µ − 1, r = 1, . . . , R. Then we can update U (`)

with ` = k−µ+1, . . ., k by polar decompositions given in (ii) above to ensure

the orthogonality condition.

• For the case k−µ is odd, we can update u
(`)
r and u

(`+1)
r simultaneously by SVDs

for ` = 1, 3, . . . , k − µ− 2, r = 1, . . . , R. Next update the new ”u
(k−µ−1)
r ” and

u
(k−µ)
r simultaneously by SVD (so, u

(k−µ−1)
r will be updated one more time),

r = 1, . . . , R. Then we can update U (`) with ` = k − µ + 1, . . ., k by polar

decompositions given in (ii) above to ensure the orthogonality condition.

The idea above leads to our SVD-based algorithm named Algorithm 7 for

orthogonal low rank approximation of tensors.
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Algorithm 7 (Orthogonal low rank approximation for tensors.)

Input: An order-k tensor T ∈ RI1×...×Ik and starting unit vectors u
(`)
r.[0] ∈ RI` , ` =

1, . . . , k, r = 1, . . . , R and u
(`)
i,[0] ⊥ u

(`)
j,[0] for ` = k − µ+ 1, . . . , k, 1 ≤ i 6= j ≤ R

Output: An orthogonal rank-R approximation

1: T = 1
‖T‖F

T {Normalize T}

2: τ := k − µ− 1

3: if k − µ is odd then

4: τ := k − µ− 2

5: end if

6: for p = 0, 1, . . . , do

7: for ` = 1, 3, . . . , τ do

8: β` = (`, `+ 1)

9: for r = 1, 2, . . . , R, do

10: C
(`)
r,[p+1] = T~β`

(⊗`−1
i=1 u

(i)
r,[p+1]⊗

⊗k
i=`+2 u

(i)
r,[p]

)
{A matrix of size I`×I`+1}

11: [u, s,v] = svds(C
(`)
r,[p+1], 1) {Dominant singular value triplet via Matlab

routine svds;assume uniqueness}

12: if u1 < 0 then

13: u = −u,v = −v

14: end if

15: u
(`)
r,[p+1]

:= u

16: u
(`+1)
r,[p+1]

:= v{if k − µ is odd, use û
(k−µ−1)
r,[p+1]

:= v}

17: λ
(`)
r,[p+1]

:= s, λ
(`+1)
r,[p+1]

:= s {if k − µ is odd, use λ̂
(k−µ−1)
r,[p+1]

:= s}

18: end for

19: end for

20: if τ = k − µ− 2 then

21: βk−µ−1 = (k − µ− 1, k − µ)

22: for r = 1, 2, . . . , R, do

23: C
(k−µ−1)
r,[p+1] = T~βk−µ−1

(⊗k−µ−2
i=1 u

(i)
r,[p+1]⊗

⊗k
i=k−µ+1 u

(i)
r,[p]

)
{A matrix of size



4.5 Convergence 71

Ik−µ−1 × Ik−µ}

24: [u, s,v] = svds(C
(k−µ−1)
r,[p+1] , 1) {Dominant singular value triplet via Matlab

routine svds;assume uniqueness}

25: if u1 < 0 then

26: u = −u,v = −v

27: end if

28: u
(k−µ−1)
r,[p+1]

:= u, u
(k−µ)
r,[p+1]

:= v

29: λ
(k−µ−1)
r,[p+1]

:= s, λ
(k−µ)
r,[p+1]

:= s

30: end for

31: end if

32: for ` = k − µ+ 1, . . . , k do

33: for r = 1, 2, . . . , R, do

34: v
(`)
r,[p+1] = T~`

(⊗`−1
i=1 u

(i)
r,[p+1] ⊗

⊗k
i=`+1 u

(i)
r,[p]

)
{define columns of V

(`)
[p+1]}

35: λ̂
(`)
r,[p+1]

:= 〈v(`)
r,[p+1],u

(`)
r,[p]〉 {define diagonals of Λ

(`)
[p+1]}

36: end for

37: [U
(`)
[p+1], S

(`)
[p+1]] = poldec(V

(`)
[p+1]Λ

(`)
[p+1])

38: for r = 1, 2, . . . , R, do

39: u
(`)
r,[p+1]

:= U
(`)
[p+1](:, r)

40: λ
(`)
r,[p+1]

:= S
(`)
[p+1](r, r)(= 〈v

(`)
r,[p+1],u

(`)
r,[p+1]〉)

41: end for

42: end for

43: end for

4.5 Convergence

In this section we prove the convergence of objective function (4.4) first and then

the convergence of iterates.
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4.5.1 Convergence of objective function

As discussed in (i) of Section 3, Algorithm 7 ensures an inherent ascending

property on λr,[p] := λr

(
u

(1)
r,[p], . . . ,u

(k)
r,[p]

)
in the sense that

λr,[p] ≤ λ
(1)
r,[p+1] = λ

(2)
r,[p+1] ≤ λ

(3)
r,[p+1] = λ

(4)
r,[p+1] ≤ . . . ≤ λ

(k−µ−1)
r,[p+1] = λ

(k−µ)
r,[p+1], r = 1, . . . , R.

Therefore, we have

R∑
r=1

(λr,[p])
2 ≤

R∑
r=1

(λ
(1)
r,[p+1])

2 ≤ . . . ≤
R∑
r=1

(λ
(k−µ)
r,[p+1])

2.

Then according to the discussion in (ii) of Section 3, we also have

R∑
r=1

(λ
(k−µ)
r,[p+1])

2 ≤
R∑
r=1

λ
(k−µ)
r,[p+1]λ

(k−µ+1)
r,[p+1] ≤ · · · ≤

R∑
r=1

λ
(k−1)
r,[p+1]λ

(k)
r,[p+1] ≤

R∑
r=1

(λ
(k)
r,[p+1])

2 =
R∑
r=1

(λr,[p+1])
2.

Therefore, the sequence {
∑R

r=1(λr,[p])
2} is increasing. Since

∑R
r=1(λr,[p])

2 ≤ ‖T‖2
F

for any p = 1, 2, · · · , the following convergence result is ready.

Theorem 4.5.1. Let the sequence {λ1,[p], . . . , λR,[p]} be generated in Algorithm 7.

Then the objective value
∑R

r=1(λr,[p])
2 converges.

4.5.2 Convergence of iterates

Before proving the global convergence of the iterates {u(`)
r,[p]}, we show that gener-

ically accumulation points of Algorithm 7 are geometrically isolated. Denote the

accumulation point generated by Algorithm 7 as

{(u(1)
1 , . . . ,u

(k)
1 ), . . . , (u

(1)
R , . . . ,u

(k)
R )}. (4.14)

Then by equations (4.10) and (4.11), any accumulation point of Algorithm 7 neces-

sarily satisfies the system of nonlinear equations, let β` = (`, `+ 1),

T~β`

(⊗`−1
i=1 u

(i)
r ⊗

⊗k
i=`+2 u

(i)
r

)
u

(`+1)
r =

〈
T,
⊗k

i=1 u
(i)
r

〉
u

(`)
r ,

` = 1, . . . , k − µ− 1, r = 1, . . . , R,

T~`

(⊗`−1
i=1 u

(i)
r ⊗

⊗k
i=`+1 u

(i)
r

)
=
∑R

t=1

〈
T,
⊗`−1

i=1 u
(i)
r ⊗ u

(`)
t ⊗

⊗k
i=`+1 u

(i)
r

〉
u

(`)
t ,

` = k − µ+ 1, . . . , k, r = 1, . . . , R.

(4.15)
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This is exactly the same as the accumulation point of ALS method proposed in [190]

if µ = 1. Furthermore, this system is the same as the one characterizing the first

order optimality condition for a stationary point of the optimization problem (4.7)

(i.e., (4.4)). As a result, the following result in [190] also holds for Algorithm 7.

Lemma 4.5.1. [190] For almost all tensors T ∈ RI1×···×Ik , the accumulation points

of any sequence generated by Algorithm 7 and the stationary points of the optimiza-

tion problem (4.7) (i.e., (4.4)) are necessarily isolated.

Assumption A. We say that a given tensor T ∈ RI1×···×Ik satisfies Assumption A

if for every convergent subsequence
{

u
(`)
r,[pj ]

}
generated by Algorithm 7, the dominant

singular value of the limiting point C
(`)
r of the corresponding subsequence

{
C

(`)
r,[pj ]

}
are simple for all ` = 1, . . . , k−µ, r = 1, . . . , R. Moreover, the limiting point V (`)Λ(`)

of the matrix V
(`)

[pj ]
Λ

(`)
[pj ]

for ` = k − µ+ 1, . . . , k are of full column rank.

Remark: It follows from Lemma 4.5.1, a stronger assumption which is indepen-

dent of Algorithm 7 is as follows:

Assumption Ã. We say that a given tensor T ∈ RI1×···×Ik satisfies Assumption Ã

if for every stationary points
{

u
(`)
r

}
of the optimization problem (4.7), the dominant

singular value of corresponding C
(`)
r are simple for all ` = 1, . . . , k−µ, r = 1, . . . , R.

Moreover, the corresponding V (`)Λ(`) for ` = k−µ+1, . . . , k are of full column rank.

Assumption A is to ensure the uniqueness of singular value decompositions and

polar decompositions in Algorithm 7. Since vectors u
(`)
r,[p] defined in Algorithm 7

are unit vectors, the sequence
{

u
(`)
r,[p]

}
must have a convergent subsequence. Select-

ing the common subset
{
r, [pj]

}
of nonnegative integers so that

{
u

(`)
r,[pj ]

}
converges

simultaneously for all ` = 1, . . . , k, r = 1, . . . , R.

Lemma 4.5.2. For all ` = 1, . . . , k, r = 1, . . . , R, if subsequences
{

u
(`)
r,[pj ]

}
generated

by Algorithm 7 converge simultaneously, then subsequences
{

u
(`)
r,[pj+1]

}
also converge

simultaneously. Furthermore, under Assumption A,
{

u
(`)
r,[pj ]

}
and

{
u

(`)
r,[pj+1]

}
con-

verge to the same limiting point for ` = 1, . . . , k, r = 1, . . . , R.
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Proof. The simultaneous convergence of
{

u
(`)
r,[pj ]

}
for ` = 3, . . . k, r = 1, . . . , R im-

plies that the subsequence
{
C

(1)
r,[pj+1]

}
converges. By the continuity inherited in

the SVD,
{

u
(1)
r,[pj+1]

}
and

{
u

(2)
r,[pj+1]

}
converge since we have aligned the direction

of dominate left and right singular vector in Algorithm 7. This results in that{
C

(3)
r,[pj+1]

}
converges and so do

{
u

(3)
r,[pj+1]

}
and

{
u

(4)
r,[pj+1]

}
. Then the simultane-

ous convergence of
{

u
(`+2)
r,[pj ]

}
, . . . ,

{
u

(k)
r,[pj ]

}
, and

{
u

(1)
r,[pj+1]

}
, . . . ,

{
u

(`−1)
r,[pj+1]

}
ensures

that
{
C

(`)
r,[pj+1]

}
converges and consequently

{
u

(`)
r,[pj+1]

}
and

{
u

(`+1)
r,[pj+1]

}
converge for

` = 1, 3, . . . , k − µ− 1, r = 1, . . . , R. One thing should be mentioned that there are

additional convergent
{

û
(k−µ−1)
r,[pj+1]

}
if k − µ is odd. Furthermore, V

(`)
[pj+1]Λ

(`)
[pj+1] con-

verges by definition and thus by continuity of the polar decomposition,
{

u
(`)
r,[pj+1]

}
converges for ` = k − µ+ 1, . . . , k, r = 1, . . . , R.

Let the limiting points of
{

u
(`)
r,[pj ]

}
,
{

u
(`)
r,[pj+1]

}
and

{
C

(`)
r,[pj+1]

}
be u

(`)
r , ũ

(`)
r

and C̃
(`)
r , respectively. In addition, use û

(k−µ−1)
r to denote the limiting point of{

û
(k−µ−1)
r,[pj+1]

}
if k − µ is odd. Now we prove that u

(`)
r = ũ

(`)
r for ` = 1, . . . , k,

r = 1, . . . , R.

First we have for r = 1, . . . , R,

λr,[pj ] =
〈
u

(1)
r,[pj ]

, C
(1)
r,[pj+1]u

(2)
r,[pj ]

〉
≤ λ

(1)
r,[pj+1] = 〈u(1)

r,[pj+1], C
(1)
r,[pj+1]u

(2)
r,[pj+1]〉 = 〈u(3)

r,[pj ]
, C

(3)
r,[pj+1]u

(4)
r,[pj ]
〉 = λ

(2)
r,[pj+1]

≤ λ
(3)
r,[pj+1] = 〈u(3)

r,[pj+1], C
(3)
r,[pj+1]u

(4)
r,[pj+1]〉 = 〈u(5)

r,[pj ]
, C

(5)
r,[pj+1]u

(6)
r,[pj ]
〉 = λ

(4)
r,[pj+1]

≤ · · ·

≤ λ
(`)
r,[pj+1] = 〈u(`)

r,[pj+1], C
(`)
r,[pj+1]u

(`+1)
r,[pj+1]〉 = 〈u(`+2)

r,[pj ]
, C

(`+2)
r,[pj+1]u

(`+3)
r,[pj ]
〉 = λ

(`+1)
r,[pj+1] (` = 1, 3, 5, . . .)

≤ · · ·

≤



λ
(k−µ−5)
r,[pj+1] = 〈u(k−µ−5)

r,[pj+1] , C
(k−µ−5)
r,[pj+1] u

(k−µ−4)
r,[pj+1] 〉 = 〈u(k−µ−3)

r,[pj ]
, C

(k−µ−3)
r,[pj+1] u

(k−µ−2)
r,[pj ]

〉

= λ
(k−µ−4)
r,[pj+1] if k − µ is even

λ
(k−µ−4)
r,[pj+1] = 〈u(k−µ−4)

r,[pj+1] , C
(k−µ−4)
r,[pj+1] u

(k−µ−3)
r,[pj+1] 〉 = 〈u(k−µ−2)

r,[pj ]
, C

(k−µ−2)
r,[pj+1] u

(k−µ−1)
r,[pj ]

〉

= λ
(k−µ−3)
r,[pj+1] if k − µ is odd
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≤



λ
(k−µ−3)
r,[pj+1] = 〈u(k−µ−3)

r,[pj+1] , C
(k−µ−3)
r,[pj+1] u

(k−µ−2)
r,[pj+1] 〉 = 〈u(k−µ−1)

r,[pj ]
, C

(k−µ−1)
r,[pj+1] u

(k−µ)
r,[pj ]
〉

= λ
(k−µ−2)
r,[pj+1] if k − µ is even

λ
(k−µ−2)
r,[pj+1] = 〈u(k−µ−2)

r,[pj+1] , C
(k−µ−2)
r,[pj+1] û

(k−µ−1)
r,[pj+1] 〉 = 〈û(k−µ−1)

r,[pj+1] , C
(k−µ−1)
r,[pj+1] u

(k−µ)
r,[pj ]
〉

= λ̂
(k−µ−1)
r,[pj+1] if k − µ is odd

≤ λ
(k−µ−1)
r,[pj+1] = 〈u(k−µ−1)

r,[pj+1] , C
(k−µ−1)
r,[pj+1] u

(k−µ)
r,[pj+1]〉 = λ

(k−µ)
r,[pj+1],

then we have by taking the limits that

λr = 〈u(1)
r , C̃(1)

r u(2)
r 〉

≤ λ̃(1)
r = 〈ũ(1)

r , C̃(1)
r ũ(2)

r 〉 = 〈u(3)
r , C̃(3)

r u(4)
r 〉 = λ̃(2)

r

≤ λ̃(3)
r = 〈ũ(3)

r , C̃(3)
r ũ(4)

r 〉 = 〈u(5)
r , C̃(5)

r u(6)
r 〉 = λ̃(4)

r

≤ · · ·

≤ λ̃(`)
r = 〈ũ(`)

r , C̃
(`)
r ũ(`+1)

r 〉 = 〈u(`+2)
r , C̃(`+2)

r u(`+3)
r 〉 = λ̃(`+1)

r (` = 1, 3, 5, . . .)

≤ · · ·

≤



λ̃
(k−µ−5)
r = 〈ũ(k−µ−5)

r , C̃
(k−µ−5)
r ũ

(k−µ−4)
r 〉 = 〈u(k−µ−3)

r , C̃
(k−µ−3)
r u

(k−µ−2)
r 〉

= λ̃
(k−µ−4)
r if k − µ is even

λ̃
(k−µ−4)
r = 〈ũ(k−µ−4)

r , C̃
(k−µ−4)
r ũ

(k−µ−3)
r 〉 = 〈u(k−µ−2)

r , C̃
(k−µ−2)
r u

(k−µ−1)
r 〉

= λ̃
(k−µ−3)
r if k − µ is odd

≤



λ̃
(k−µ−3)
r = 〈ũ(k−µ−3)

r , C̃
(k−µ−3)
r ũ

(k−µ−2)
r 〉 = 〈u(k−µ−1)

r , C̃
(k−µ−1)
r u

(k−µ)
r 〉

= λ̃
(k−µ−2)
r if k − µ is even

λ̃
(k−µ−2)
r = 〈ũ(k−µ−2)

r , C̃
(k−µ−2)
r û

(k−µ−1)
r 〉 = 〈û(k−µ−1)

r , C̃
(k−µ−1)
r u

(k−µ)
r 〉

= λ̂
(k−µ−1)
r if k − µ is odd

≤ λ̃(k−µ−1)
r = 〈ũ(k−µ−1)

r , C̃(k−µ−1)
r ũ(k−µ)

r 〉 = λ̃(k−µ)
r .

Combined with discussion in (ii) of Section 4.3,

R∑
r=1

(λr,[pj ])
2 ≤

R∑
r=1

(λ
(1)
r,[pj+1])

2 =
R∑
r=1

(λ
(2)
r,[pj+1])

2

≤ . . .

≤
R∑
r=1

(λ
(`)
r,[pj+1])

2 =
R∑
r=1

(λ
(`+1)
r,[pj+1])

2 (` = 1, 3, 5, . . .)
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≤ . . .

≤


∑R

r=1(λ
(k−µ−3)
r,[pj+1] )2 =

∑R
r=1(λ

(k−µ−2)
r,[pj+1] )2 if k − µ is even∑R

r=1(λ
(k−µ−2)
r,[pj+1] )2 =

∑R
r=1(λ̂

(k−µ−1)
r,[pj+1] )2 if k − µ is odd

≤
R∑
r=1

(λ
(k−µ−1)
r,[pj+1] )2 =

R∑
r=1

(λ
(k−µ)
r,[pj+1])

2 ≤
R∑
r=1

λ
(k−µ)
r,[pj+1]λ

(k−µ+1)
r,[pj+1]

≤
R∑
r=1

(λ
(k−µ+1)
r,[pj+1] )2 ≤ . . . ≤

R∑
r=1

(λ
(k)
r,[pj+1])

2 =
R∑
r=1

(λr,[pj+1])
2.

So, it follows that

R∑
r=1

(λr)
2 ≤

R∑
r=1

(λ̃(1)
r )2 =

R∑
r=1

(λ̃(2)
r )2

≤ . . .

≤
R∑
r=1

(λ̃(`)
r )2 =

R∑
r=1

(λ̃(`+1)
r )2 (` = 1, 3, 5, . . .)

≤ . . .

≤


∑R

r=1(λ̃
(k−µ−3)
r )2 =

∑R
r=1(λ̃

(k−µ−2)
r )2 if k − µ is even∑R

r=1(λ̃
(k−µ−2)
r )2 =

∑R
r=1(λ̂

(k−µ−1)
r )2 if k − µ is odd

≤
R∑
r=1

(λ̃(k−µ−1)
r )2 =

R∑
r=1

(λ̃(k−µ)
r )2 ≤

R∑
r=1

λ̃(k−µ)
r λ̃(k−µ+1)

r

≤
R∑
r=1

(λ̃(k−µ+1)
r )2 ≤ . . . ≤

R∑
r=1

(λ̃(k)
r )2 =

R∑
r=1

(λ̃r)
2.

In addition, we also know by Theorem 4.5.1,

R∑
r=1

(λr)
2 =

R∑
r=1

(λ̃r)
2.

Hence, we obtain for r = 1, . . . , R, λr = λ̃
(1)
r = · · · = λ̃

(k−µ−1)
r = λ̃

(k−µ)
r , if k − µ is even

λr = λ̃
(1)
r = · · · = λ̃

(k−µ−1)
r = λ̂

(k−µ−1)
r = λ̃

(k−µ)
r , if k − µ is odd

which, in return, gives

λ̃(1)
r = 〈ũ(1)

r , C̃(1)
r ũ(2)

r 〉 = 〈u(1)
r , C̃(1)

r u(2)
r 〉 = λr, (4.16)
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λ̃(3)
r = 〈ũ(3)

r , C̃(3)
r ũ(4)

r 〉 = 〈u(3)
r , C̃(3)

r u(4)
r 〉 = λ̃(2)

r , (4.17)

...

λ̃(`)
r = 〈ũ(`)

r , C̃
(`)
r ũ(`+1)

r 〉 = 〈u(`)
r , C̃

(`)
r u(`+1)

r 〉 = λ̃(`−1)
r (` = 1, 3, 5, . . .) (4.18)

... 

λ̃
(k−µ−3)
r = 〈ũ(k−µ−3)

r , C̃
(k−µ−3)
r ũ

(k−µ−2)
r 〉 = 〈u(k−µ−3)

r , C̃
(k−µ−3)
r u

(k−µ−2)
r 〉

= λ̃
(k−µ−4)
r , if k − µ is even,

λ̃
(k−µ−2)
r = 〈ũ(k−µ−2)

r , C̃
(k−µ−2)
r û

(k−µ−1)
r 〉 = 〈u(k−µ−2)

r , C̃
(k−µ−2)
r u

(k−µ−1)
r 〉

= λ̃
(k−µ−3)
r , if k − µ is odd,

(4.19)



λ̃
(k−µ−1)
r = 〈ũ(k−µ−1)

r , C̃
(k−µ−1)
r ũ

(k−µ)
r 〉 = 〈u(k−µ−1)

r , C̃
(k−µ−1)
r u

(k−µ)
r 〉

= λ̃
(k−µ−2)
r , if k − µ is even,

λ̃
(k−µ−1)
r = 〈ũ(k−µ−1)

r , C̃
(k−µ−1)
r ũ

(k−µ)
r 〉 = 〈û(k−µ−1)

r , C̃
(k−µ−1)
r u

(k−µ)
r 〉

= λ̂
(k−µ−1)
r , if k − µ is odd.

(4.20)

Since λ
(1)
r,[pj+1], λ

(3)
r,[pj+1], . . ., λ

(k−µ−1)
r,[pj+1] are the largest singular values of C

(1)
r,[pj+1],

C
(3)
r,[pj+1], . . ., λ

(k−µ−1)
r,[pj+1] respectively, thus, λ̃

(1)
r , λ̃

(3)
r , . . ., λ̃

(k−µ−1)
r are the largest sin-

gular values of C̃
(1)
r , C̃

(3)
r , . . ., C̃

(k−µ−1)
r respectively.

Furthermore, under Assumption A, the left and right singular vectors of C̃
(1)
r ,

. . ., C̃
(k−µ−1)
r are unique. Therefore, we have for r = 1, . . . , R,

ũ(1)
r = u(1)

r , ũ(2)
r = u(2)

r , (by (4.16))

ũ(3)
r = u(3)

r , ũ(4)
r = u(4)

r , (by (4.17))

...

ũ(`)
r = u(`)

r , ũ(`+1)
r = u(`+1)

r (` = 1, 3, 5, . . .) (by (4.18))

... ũ
(k−µ−3)
r = u

(k−µ−3)
r , ũ

(k−µ−2)
r = u

(k−µ−2)
r , if k − µ is even,

ũ
(k−µ−2)
r = u

(k−µ−2)
r , û

(k−µ−1)
r = u

(k−µ−1)
r , if k − µ is odd,

(by (4.19))

 ũ
(k−µ−1)
r = u

(k−µ−1)
r , ũ

(k−µ)
r = u

(k−µ)
r , if k − µ is even,

ũ
(k−µ−1)
r = û

(k−µ−1)
r , ũ

(k−µ)
r = u

(k−µ)
r , if k − µ is odd,

(by (4.20))
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that is u
(`)
r = ũ

(`)
r hold for ` = 1, . . . , k − µ, r = 1, . . . , R. Finally, since

Ṽ (`) = limV
(`)

[pj+1] = limV
(`)

[pj ]
= V (`), Λ̃(`) = lim Λ

(`)
[pj+1] = lim Λ

(`)
[pj ]

= Λ(`),

we have with Assumption A that

Ũ (`) = limU
(`)
[pj+1] = limU

(`)
[pj ]

= U (`), ∀` = k − µ+ 1, . . . , k.

Now we are ready to prove the convergence of the whole sequence
{

u
(`)
r,[p]

}
for

` = 1, . . . , k, r = 1, . . . , R.

Theorem 4.5.2. For almost all tensors T satisfying Assumption A, the sequence{
u

(`)
r,[p]

}
generated in Algorithm 7 converges for ` = 1, . . . , k, r = 1, . . . , R.

Proof. Suppose that
{

u
(`)
r,[pj ]

}
is any subsequence converging to a limiting point u

(`)
r

for ` = 1, . . . , k, r = 1, . . . , R. By Lemma 4.5.1, u
(`)
r is isolated, and by Lemma 4.5.2,

the subsequence
{

u
(`)
r,[pj+1]

}
also converges to u

(`)
r and

∥∥∥u(`)
r,[pj+1] − u

(`)
r,[pj ]

∥∥∥ → 0 for

` = 1, . . . , k, r = 1, . . . , R. It follows from Lemma 4.3.3 that the whole sequence{
u

(`)
r,[pj+1]

}
converges to u

(`)
r for ` = 1, . . . , k, r = 1, . . . , R.

4.6 Numerical experiments

In this section, we present numerical experiments to illustrate the convergence

of Algorithm 7 by measuring

• objective value
∑R

r=1 λ
2
r;

• iterate error
∑k

`=1

∑R
r=1 ‖u

(`)
r,[p+1] − u

(`)
r,[p]‖2

2.

We experiment with Random tensor, Stochastic tensor, Cauchy tensor, Hilbert

tensor, and Toeplitz tensor, with the same size R20×16×10×32 and µ = 2, R = 5:

• Random tensor [40]: randomly generate.
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• Stochastic tensor [129]: τi1,i2,i3,i4 =


c i1 6= i2, i2 6= i3, i3 6= i4

0 i1 = i2, i2 6= i3, i3 6= i4

1/20 otherwise

, where c

is randomly in (0, 1) by the homogenous distribution such as
∑

i1∈J20K τi1,i2,i3,i4 =

1 with ij 6= ij+1, j = 1, 2, 3.

• Cauchy tensor [39]: τi1,i2,i3,i4 = 1
c(i1)+c(i2)+c(i3)+c(i4)

, where c is a random vector

with size 32.

• Hilbert tensor [165]: τi1,i2,i3,i4 = 1
i1+i2+i3+i4−3

.

• Toeplitz tensor [41]: τi1+j,i2+j,i3+j,i4+j = τi1,i2,i3,i4 for j ∈ Jmin(20 − i1, 16 −

i2, 10− i3, 32− i4)K.

The initial vectors are chosen by four different ways:

• ’Random Initial’–unit vectors u
(`)
r for ` = 1, . . . , k and r = 1, . . . , R are gener-

ated randomly to satisfy orthogonality constrain with µ = 2.

• ’Identity Initial’–each [u
(`)
1 , . . . ,u

(`)
R ] for ` = 1, . . . , k are taken as the first R

columns of identity matrices.

• ’Orthogonal Initial’–each [u
(`)
1 , . . . ,u

(`)
R ] for ` = 1, . . . , k are taken as the first

R columns of random orthonormal matrices.

• ’Singular Value Initial’–the major left singular vectors of the unfoldings of the

tensors are used as initials.

The numerical results for the first 150 iterations are shown in Figure 4.1–Figure 4.5.
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Figure 4.5: Comparison on Toeplitz Tensor.

Figure 4.1–Figure 4.5 lead to the following observations:

• Objective value satisfies the monotone increasing property for each iteration

as proved in the previous section;

• For different initial vectors, the approximated objective values may be different

for the same test tensor, that is, iterates may converge to different limit points.

Hence, the computed result is only optimal in a local neighborhood for each

initial vector. As addressed in [40], it is interesting to study for what tensors

or what initial guesses Algorithm 7 converges to the global optimum.
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• Iterates converge, but they are not monotone in each step. Note that iterate

errors increase suddenly, for example, at step 61 with ”Orthogonal Initial” on

Stochastic tensor, step 25 with ”Orthogonal Initial” and step 66 with ”Singular

Value Initial” on Toeplitz tensor. The reason might be that the largest singular

value of C
(`)
r,[p] involved in Algorithm 7 is not simple at that certain iteration

steps.

• Iterates converge but slower than that of objective values. Thus, it is important

to study strategies to speed-up the convergence of iterates.

• When it comes to the qualities of the final approximation, among 4 different

initial vectors, none does offer obvious advantage. It is challenging to study

for what initial guesses Algorithm 7 converges faster in terms of both objective

values and iterate errors.



Chapter 5
General Convergence of ADM

5.1 Introduction

Many algorithms can be cast in the abstract form
xk+1 = f(yk),

yk+1 = g(xk+1),

k = 0, 1, . . . , (5.1)

where f : U → V and g : V → U , referred to henceforth as the generating functions,

are maps representing some black-box evaluations or some intermediate numerical

procedures. The variables x and y can be vectors, matrices, or even functions. The

choice of U, V depends on the desired properties of the variables x and y, which can

be, for instance, nonnegative, orthogonal, or stochastic. In this chpater, we focus

only on finite dimensional variables, so the feasible sets U, V are subsets in some

Euclidean spaces with suitable dimensions and constraints. We shall give several

interesting but nontrivial examples in the later part of this discussion to demonstrate

this point. For more complicated problems involving n variables x(1), . . . ,x(n), a

83
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similar alternating iteration can be written in this form

x
(1)
k+1 = f (1)(x

(2)
k ,x

(3)
k , . . . ,x

(n)
k ),

x
(2)
k+1 = f (2)(x

(1)
k+1,x

(3)
k , . . . ,x

(n)
k ),

...

x
(n)
k+1 = f (n)(x

(1)
k+1,x

(2)
k+1, . . . ,x

(n−1)
k+1 ),

k = 0, 1, . . . . (5.2)

Perhaps the simplest algorithm in the form of (5.2) is the Gauss-Seidel iterative

scheme used for solving a linear system where all maps f (`) are linear and x(`) are

scalars. Another example is the alternating least squares (ALS) method used for low

rank tensor approximations of a given order-n tensor [52,139,179,189,197], where all

variables are expected to be of unit length. We shall concentrate on the analysis for

(5.1) in this chapter. The generalization to (5.2) can be accomplished in a similar

way.

Obviously, the sequence {yk} generated by (5.1) can be obtained from the fixed-

point iteration

yk+1 = g(f(yk)), k = 0, 1, . . . . (5.3)

If the composite F := g ◦ f , referred to henceforth as the transition function (of one

sweep for yk), is a contraction map, then the Banach fixed-point theorem asserts

that the iterates from (5.3) converge to a unique fixed point. This is the most

impeccable conclusion, but often proving that g◦f is a contraction map is difficult or

impossible. Likewise, if g◦f is continuous and maps a convex compact set into itself,

then the Brouwer fixed-point theorem asserts that there is a fixed-point y∗ such that

g ◦ f(y∗) = y∗. In general, however, not much is known about the limiting behavior

of the sequence {yk} itself. For many of the algorithms discussed in the literature

and even used in practice, we find that lacking a rigorous convergence analysis for

the iterates {xk} and {yk} themselves is a serious and widespread shortfall [21,139].
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5.1.1 Summary

The main contribution of this chapter is a general framework for characteriz-

ing the limiting behavior of (5.1) under much easy-to-check criteria. We apply

the framework to a variety of alternating direction methods and, in particular, the

alternating least squares algorithms to demonstrate how the theory facilitates con-

vergence analysis, some of which are difficult to come by otherwise.

5.1.2 Outline of the chapter

This chapter is organized as follows. In Section 5.2, we build our framework

by progressively adding in conditions. The theory works in its most basic form,

but more conditions make it easier to draw conclusions. As a demonstration, we

apply the theory in Section 5.3 to a variety of classical results in the literature. In

this context, the proof of convergence is not new, but it shows the versatility of

our framework. In Section 5.4, we use our theory to argue the convergence of algo-

rithms for the Tucker nearest problem and the structured Kronecker approximation

problem.

5.2 Basic theory

We begin our theory with the most basic form, namely, checking the difference

between every convergent subsequence and its immediate next iterate. The detailed

prove of following lemma can be found in Lemma 2.2.6.

Lemma 5.2.1. Assume that a∗ is an isolated accumulation point of a sequence

{ak} such that for every subsequence {akj} converging to a∗, there is an infinite

subsequence {akji} such that |akji+1 − akji | → 0. Then the whole sequence {ak}

converges to a∗.

To apply Lemma 5.2.1 to algorithms such as (5.1), we follow the steps that
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a. Check to see that an accumulation point of a convergent subsequence {akj} is

isolated. (See the remarks following Corollary 5.2.1 and Lemma 5.2.2.)

b. Search for a subsequence {akji} such that after applying the transition map,

say F , the difference |F (akji )− akji | diminishes to zero.

For specific applications, see our recent work on the convergence of the ALS al-

gorithm and the SVD-based algorithm for the best rank-1 tensor approximations

in [79,189].

By imposing the continuity on the generating function and the finiteness on

isolated accumulation points, the following lemma asserts a specific limiting behavior

of the resulting iterates.

Theorem 5.2.1. Let F : U −→ U be a continuous map over a closed subset U ⊂ Rn.

Suppose that the sequence {zk} generated by iterative scheme zk+1 = F (zk) is well

defined, bounded, and has finitely many isolated accumulation points. Then

1. Either the sequence {zk} converges, or

2. There are disjoint neighborhoods of the accumulation points such that, for k

large enough, the consecutive elements zk, zk+1, . . . visit each neighborhood in

a cyclic order.

Proof. Let
{
zki
}

denote an arbitrary convergent subsequence of {zk}. By continuity,

the subsequence
{
zki+1

}
also converges. Repeating this process, we denote the

limiting behavior when i→∞ as

zki −→ z∗0

zki+1 −→ z∗1 = F (z∗0)

zki+2 −→ z∗2 = F (z∗1)
...

...

(5.4)

The sequence {z∗0, z∗1, . . .} is part of the accumulation points of {zk} and thus must

be finite. Let s ≥ 0 be the smallest integers such that z∗s+p = z∗s for some positive



5.2 Basic theory 87

integer p. Then by continuity, we have z∗s+p+1 = z∗s+1, and so on. In this way,

elements in {z∗0, . . . z∗s+p−1} are distinct and are the only accumulation points in the

process of (5.4).

As these points are isolated, there exists ε > 0 such that the spheres Nε(z
∗
q)

centered at z∗q with radius ε, q = 0, 1, . . . , s+p−1, are disjoint from each other. For

each fixed integer t, all but finitely many points from this sequence {zki+t} belong

to Nε(z
∗
q) with

q :=

 t, if 0 ≤ t ≤ s,

s+ ((t− s) mod p), if s < t.

On the other hand, for a fixed zki with sufficiently large i, write zkj = zki+tj with

tj := kj−ki for all j > i. Since zkj ∈ Nε(z
∗
0) when j is sufficiently large, we conclude

that the two conditions s = 0,

(kj − ki) mod p = 0, for all sufficiently large i, j
(5.5)

must hold simultaneously.

Suppose
{
z`j
}

is an arbitrary convergent subsequence of {zk}. For each `j, let kij

be one of the indices {ki} that is smaller than `j. Then z`j = zkij+(`j−kij ) and hence

all but finitely many elements in
{
z`j
}

must belong to one of these balls Nε(z
∗
q). In

this way, we have proved that all convergent subsequences of {zk} satisfy (5.5).

If p = 1, then q = 0, the sequence {zk} converges to z∗0. If p > 1, then {zk} does

not converge, but its elements for sufficiently large k must be distributed in such a

way as residing alternately among Nε(z
∗
q) in the order q = 0, . . . , p− 1.

It is informative to remark further on the three conditions required by Theo-

rem 5.2.1 as follows:

a. The sequence {zk} being bounded. This usually poses no additional burden

because it is the prerequisite for convergence.
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b. The generating function F being continuous. If F is given in analytic form,

then its continuity can easily be checked. However, if F is given as a computa-

tional procedure, then cautions should be taken to ensure the continuity. For

example, if F (Y ) refers to the orthogonal matrix U(Y ) in the singular value

decomposition of the matrix Y = UΣV >, then in theory U can be made to

be continuously dependent on Y [29, 192]. But if U is obtained by a certain

SVD algorithm, then the signs of columns of U(Y1) may differ from those of

U(Y2) even if Y2 is close to Y1, leading to discontinuous jumps in the numerical

outcomes. An easy fix in the procedure is due.

c. The accumulation points being finite and geometrically isolated. This is the

most demanding task. Even so, there are multiple avenues to tackle this task.

For example, in many algorithm formulations the model (5.1) is actually a

polynomial system in the variables x and y. The notion of algebraic geometry

might be used as a tool for arguing the finite cardinality and isolation of

solutions.

The following lemma from the theory of parameter continuation [164, Theo-

rem 7.1.1] is often useful for checking the last condition above.

Lemma 5.2.2. Let P (z; q) be a system of n polynomials in variables z ∈ Cn and

parameters q ∈ Cm. Let N (q) denote the number of geometrically isolated solutions

to P (z; q) = 0 over the algebraically closed complex space. Then,

1. N (q) is finite, and it is the same, say N , for almost all q ∈ Cm;

2. For all q ∈ Cm, N (q) ≤ N ;

3. The subset of Cm where N (q) = N is a Zariski open set. That is, the excep-

tional subset of q ∈ Cm where N (q) < N is an affine algebraic set contained

within an algebraic set of codimension one.

Since Rn (indeed, the closure of any infinite subset) is Zariski dense in Cn, the

above statements hold for almost all parameters q ∈ Rm, except that the number of
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real-valued isolated solutions varies as a function of q and is no longer a constant.

For our applications, we only need the fact that the real roots of a polynomial system

are finite and geometrically isolated for generic q.

The argument in Theorem 5.2.1 can be generalized to multi-level iterative schemes

such as (5.1). Suppose that both functions f and g are continuous and that the

sequences {xk} and {yk} generated are bounded and have finitely many isolated ac-

cumulation points, respectively. Then any convergent subsequence
{
yki
}

will lead

to a process

yki −→ y∗0

xki+1 −→ x∗1 = f(y∗0)

yki+1 −→ y∗1 = g(x∗1)

xki+2 −→ x∗2 = f(y∗1)
...

...

(5.6)

From this point on, an argument can be made to draw the same conclusion as in

Theorem 5.2.1 for both {xk} and {yk} simultaneously. In this way, we may also

interpret Theorem 5.2.1 as if F = g ◦ f applied to y for (5.1) and similarly for the

general scheme (5.2).

An obvious condition for convergence is the exclusion of any possible cyclic be-

havior. This often can be accomplished if we know additional information such as

some monotonicity associated with the iteration.

Corollary 5.2.1. Suppose that the iteration (5.2) represents an alternating opti-

mization mechanism for an objective function h(x(1), . . . ,x(n)). Under the same

conditions of Theorem 5.2.1 where F denotes the transition function representing

one complete sweep of the alternating procedure, the objective function h assumes

the same value at all accumulation points.

Proof. By Theorem 5.2.1, we only need to consider the case when the sequence {zk}

has cyclic behavior. Without loss of generality, it suffices to consider the scheme

(5.1) which involves only two variables z = (x(1),x(2)). To fix the idea, we assume

that the alternating optimization is doing minimization. By the way the sequence
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{(x(1)
k ,x

(2)
k )} is generated, we should have the relationship

h(x
(1)
k+1,x

(2)
k+1) ≤ h(x

(1)
k+1,x

(2)
k ) ≤ h(x

(1)
k ,x

(2)
k ).

Abbreviate (x
(1)
k ,x

(2)
k ) to zk. The sequence

{
h(zk)

}
is monotone and must converge.

If there are more than one isolated accumulation points, let z∗0 and z∗1 denote any

two such points. The iterates {zk} must visit arbitrarily diminishing vicinity of

each accumulation point infinitely many times. Suppose h(z∗0) < h(z∗1). Then

there exists a neighborhood Nε(z
∗
0) of z∗0 such that the iterates cannot possibly

”return” to revisit the higher level z∗1 again once it has visited Nε(z
∗
0) because of

the non-ascending property mentioned earlier. Similarly, it cannot happen that

h(z∗0) > h(z∗1). Therefore, the objective function must assume the same value at all

accumulation points.

Motivated by Corollary 5.2.1, we now impose some mild conditions of smoothness

on the part of the optimization mechanism. The following observation is handy for

applications.

Theorem 5.2.2. Suppose that an alternating optimization method can be cast in

form of (5.2). Write z = (x(1), . . . ,x(n)) where x(`) ∈ U (`) and U (`) ⊂ RI`. Assume

that

1. The conditions in Theorem 5.2.1 are satisfied where F (z) denotes the transition

function of one complete sweep of the alternating optimization, zk+1 = F (zk).

2. Each generating function f (`) represents the optimization mechanism in the

`-th direction, is continuously differentiable, and returns the unique global1

minimizer x
(`)
k+1 of the restricted objective function

h`(w) := h(x
(1)
k+1, . . . ,x

(`−1)
k+1 ,w,x

(`+1)
k , . . . ,x

(n)
k ).

1What is really needed in the proof is the continuous differentiability of the transition function

F . The uniqueness is to ascertain that f (`) unambiguously defines x
(`)
k+1. So long as this map f (`)

is well defined, the requirement of being a global minimizer is not essential.
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3. The objective function h(z) is second order continuously differentiable.

4. One of the accumulation points z∗0 of {zk} is a local minimizer of h(z) at which

the Hessian ∇2h(z∗0) is symmetric and positive definite.

Then the sequence {zk} converges.

Proof. Let
{
zki
}

be an arbitrary convergent subsequence with limit point z∗0. We

claim that the spectral radius ρ(F ′(z∗0)) is strictly less than 1. If this claim is true,

then there exists a neighborhood Nε(z
∗
0) in which F is a contraction. That is, for any

convergent subsequence {zkj} ⊂ Nε(z
∗
0), the subsequence {F (zkj)} is also contained

in Nε(z
∗
0). Since {zkj+1} must also converge by the continuity of F , it converges to

z∗0. By Lemma 5.2.1, we know the sequence {zk} converges.

It only remains to prove that ρ(F ′(z∗0)) < 1. It suffices to consider the case (5.1)

only. The proof can be extended to the general case (5.2). The following argument

is modified from the ideas in [22, Lemma 2]. Define H : U (1)×U (2)×U (1)×U (2) →

U (1) × U (2) by

H(x(1),x(2); y(1),y(2)) :=

 ∂h
∂x(1) (x

(1),y(2))

∂h
∂x(2) (x

(1),x(2))

 , (5.7)

where the right hand side denotes the partial gradient of H with respect to the

variables (x(1),x(2)), but evaluated at different points. Define also G : U (1)×U (2) →

U (1) × U (2) by

G(y(1),y(2)) := H(F (y(1),y(2)); y(1),y(2)). (5.8)

Given any (y
(1)
k ,y

(2)
k ) near z∗0, observe that

G(y
(1)
k ,y

(2)
k ) = H(y

(1)
k+1,y

(2)
k+1,y

(1)
k ,y

(2)
k ) =

 ∂h
∂y(1) (y

(1)
k+1,y

(2)
k )

∂h
∂y(2) (y

(1)
k+1,y

(2)
k+1)

 = 0,

because y
(1)
k+1 and y

(2)
k+1 are the respective global minimizers of the restrictive objec-

tive functions h1 and h2. We see that G ≡ 0 in a neighborhood Nε(z
∗
0). From (5.8),

the evaluation of the Jacobian of G at z∗0 yields

(
∂H

∂(x(1),x(2))

∂F

∂(y(1),y(2))
+

∂H

∂(y(1),y(2))
)

∣∣∣∣
z∗0

= 0, (5.9)
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where by (5.7) we have

∂H

∂(x(1),x(2))
=

 ∂
∂x(1) (

∂h
∂x(1) ) 0

∂
∂x(1) (

∂h
∂x(2) )

∂
∂x(2) (

∂h
∂x(2) )

 ,
∂H

∂(y(1),y(2))
=

 0 ∂
∂x(2) (

∂h
∂x(1) )

0 0

 .
Note that the above two matrices make up

∇2h(z∗0) = (
∂H

∂(x(1),x(2))
+

∂H

∂(y(1),y(2))
)

∣∣∣∣
z∗0

,

which is assumed to be symmetric and positive definite. It follows from (5.9) that

F ′(z∗0) = −(
∂H

∂(x(1),x(2))

∣∣∣∣
z∗0

)−1(
∂H

∂(y(1),y(2))

∣∣∣∣
z∗0

) (5.10)

is well defined. Furthermore, we see in (5.10) that F ′(z∗0) is of the form −(D−L)−1U

which is precisely the iteration matrix if the (block) Gauss-Seidel scheme is applied to

solving a linear equation where the coefficient matrix A is split as A = D−L−U [150,

Theorem 7.1.9]. Since the Gauss-Seidel method converges when A is symmetric and

positive definite, we know that ρ(F ′(z∗0)) < 1.

Alternating optimization, or more generally alternating direction, is not usually

the best approach for solving the underlying problem. However, swapping one com-

plicated problem of many variables with a sequence of simpler problems each of

which handles and adjusts one subset of variables a time can sometimes be imple-

mented more easily and offer computational convenience. The above theory outlines

a basic convergence analysis framework for these types of alternating direction it-

erations. In the remaining portion of this chapter, we discuss some interesting

applications. Some of the convergence results are new.

5.3 Applications to some known cases

The convergence behavior of examples in this section is well understood in the

literature. Certainly we are not trying to reinvent the wheels. Rather, we use these
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L1

L1

L1 L2L2

L2

Figure 5.1: Converging, cyclic, and diverging behavior of Gauss-Seidel iterations in R2.

known facts to demonstrate the subtleties in dealing with convergence when some of

the conditions mentioned in the preceding section are not met. On the other hand,

we also demonstrate that our framework offers an alternative and unified proof of

convergence which is much simpler than some of those already done in the literature.

5.3.1 The Gauss-Seidel method for solving a system of lin-

ear equations

The classical Gauss-Seidel iteration scheme is of the form (5.2). It is well known

that the method applied to the linear system Ax = b with non-zero elements on

the diagonals does not always produce a convergent result. Convergence is guaran-

teed only in a few cases such as the matrix A being diagonally dominant or being

symmetric and positive definite. In the event that the Gauss-Seidel method fails

to converge for a given A, what has happened is that either the iterates become

unbounded or the iterates go cyclically, as has been characterized in Theorem 5.2.1.

The directions of variables are alternated by satisfying one linear equation a time.

See Figure 5.1 for a graphical interpretation of the Gauss-Seidel method applied to a

2-dimensional problem. The scheme itself does not contain any type of optimization

in its iteration.
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5.3.2 The power method for finding the dominant eigenvec-

tor

Given a matrix A ∈ Rn×n and an initial unit vector y0 ∈ Rn, the power method
xk+1 = Ayk,

yk+1 = xk+1

‖xk+1‖∞
,

(5.11)

is in the form of (5.1). The sequences {xk} and {yk} are clearly bounded. The

functions f (`), ` = 1, 2, on the right side of (5.11) are clearly continuous. Exclud-

ing the extraneous zero solution after scaling the second equation by a multiplier

‖xk+1‖∞, the entire system can be regarded as a polynomial system depending on

the parameter A. By Lemma 5.2.2, we know that for almost all matrices A ∈ Rn×n,

the stationary points are finite and isolated. By Theorem 5.2.1, we conclude that

the iterates generated by the power method converge for a generic A. In numeri-

cal linear algebra, we know even more specifics when the method fails to converge,

e.g., when A has multiple dominant eigenvalues, in which case the matrix A has

a multi-dimensional eigenspace and the system (5.11) has non-isolated stationary

points. See also Section 5.3.5 for more detailed discussion from the perspective of

the high-order power method.

5.3.3 The alternating least squares method for computing

the QR decomposition

There are efficient algorithms for computing the fundamentally important QR

decomposition of a given matrix A ∈ Rm×n. Surely it is of little value to try to find

this decomposition by the alternating least squares approach
Rk+1 := arg min

R = upper triangular
‖A−QkR‖F ,

Qk+1 := arg min
Q>Q=In

‖A−QRk+1‖F .
(5.12)
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Despite its inefficiency, however, the scheme (5.12) is theoretically doable. Indeed, it

can be argued that Rk+1 is the upper triangular part of the matrix Q>k A and Qk+1 is

exactly the orthogonal portion in the polar decomposition of AR>k+1 (which is more

expensive than the QR decomposition itself). By construction, the objective values

‖A − QkRk‖F descend and converge, but possibly to a nonzero value. Clearly, the

sequences {Qk} and {Rk} are bounded and the abstract functions defining them are

continuous. The stationary points must satisfy the optimality conditions
R = triu(Q>A),

Q>AR> = RA>Q,

which is a linear polynomial system inQ withA as the parameter and, by Lemma 5.2.2,

has finitely many isolated solutions for generic A ∈ Rm×n. The conditions in Theo-

rem 5.2.2 are satisfied, so the iterates {Qk} and {Rk} do converge, even though not

necessarily they converge to the QR decomposition of A.

5.3.4 The alternating projection method for finding struc-

tured low rank matrices

Let R(r) denote the set of all rank r matrices and Ω the set of matrices with

a prescribed structure, say, Toeplitz or Hankel matrices. Then the desired set of

structured rank r matrices can be regarded as the intersection of these two sets.

To find a structured low rank matrix, if exist, the idea of alternating projections

between these two sets can be employed [31,45,46]. The process is to satisfy the rank

constraint and the structural constraint alternately while the distance in between

is being reduced. The geometry of lift and project is depicted in Figure 5.2. The

procedures outlined in Algorithm 8 obviously fits the basic model (5.1) where both

actions of lifting and the projection are continuous. Since R(r) is not convex, the

iteration might stagnate back and forth between R(r) and Ω. In that case, an

intersection has not been found, but still the iterates converge to a locally nearest

location between the two geometric entities by our theory.
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Figure 5.2: Alternating projections between lower rank matrices and structured matrices

Algorithm 8 (Lift-and-project algorithm.)

Input: Given an arbitrary A(0) = A ∈ Ω

Output: A pair of matrices that locally minimizes the distance between R(r) and

Ω
1: repeat

2: lift: Compute the rank r matrix B(ν) in R(r) that is nearest to A(ν).

3: project: Compute the projection A(ν+1) of B(ν) onto the subspace Ω.

4: until the sequence {A(ν)} meets stopping criteria

5.3.5 Best rank-one tensor approximation

We discuss the rank-one approximation first. The Tucker nearest problem will

be discussed in Section 5.4.1.

The most popular approach for the best rank-one approximation is the notion

of alternating least squares method. The procedures are described in Algorithm 9,

where the subscript ·[p] indicates the quantities resulting from the p-th iteration, û(`)

means to exclude this vector from the list, and

T~` S := [〈τ:,ν`,:, S〉] ∈ RI` , ν` = 1, . . . , I`, (5.13)

with τ:,ν`,: denoting the ν`-th “slice” of the tensor T in the `-th direction and 〈·, ·〉

the Frobenius inner product generalized to multi-dimensional arrays.

While the limiting behavior of the objective values {λ(`)
[p]} is easy to understand,
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Algorithm 9 (High-order power method.)

Input: A generic order-k tensor T and k unit vectors u
(1)
[0] ∈ RI1 , . . . ,u(k)

[0] ∈ RIk ,

Output: A local best rank-1 approximation to T

1: for p = 0, 1, · · · , do

2: for ` = 1, 2, · · · , k do

3: u
(`)
[p+1] = T~` (u

(1)
[p+1]⊗. . .⊗u

(`−1)
[p+1]⊗û(`)⊗u

(`+1)
[p] . . .⊗u

(k)
[p] )

4: λ
(`)
[p+1]

:= ‖u(`)
[p+1]‖2

5: u
(`)
[p+1]

:=
u
(`)
[p+1]

λ
(`)
[p+1]

6: end for

7: end for

it has taken tremendous effort to prove the convergence of the iterates {u(`)
[p]} them-

selves [179, 189]. We now apply our theory to Algorithm 9 to demonstrate how the

convergence can be argued in a quick and convenient way.

First, the definition of u
(`)
[p+1] in Line 3 followed by Line 5 gives rise to precisely

the unique global maximizer of the function

λ
(`)
[p+1](w) := 〈T,u(1)

[p+1]⊗. . .⊗u
(`−1)
[p+1]⊗w⊗u

(`+1)
[p] . . .⊗u

(k)
[p] 〉

which is the restriction of the objective function

λ(u(1), . . . ,u(k)) = 〈T,u(1)⊗. . .⊗u(k)〉 (5.14)

to the `-th direction subject to the constraint of unit length. As a polynomial in

variables u(1), . . . ,u(k), the smoothness of λ and the associated λ
(`)
[p+1] is guaranteed.

The first order optimality condition for a stationary point of (5.14) is to satisfy the

system of
∑k

`=1 I` polynomials [130,189]

T~` (u(1)⊗. . .⊗û(`)⊗. . .⊗u(k)) = 〈T,u(1)⊗. . .⊗u(k)〉u(`), ` = 1, . . . , k, (5.15)

which, by Lemma 5.2.2, contains only geometrically isolated solutions for a generic

tensor T . Conditions in Theorem 5.2.1 are satisfied generically. It is easy to see that

the sequence {λ(u
(1)
[p] , . . . ,u

(k)
[p] )} is monotone non-decreasing. Assuming the generic
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condition that the Hessian of λ at such a local maximizer is negative definite, then

the convergence of the iterates {(u(1)
[p] , . . . ,u

(k)
[p] )} is ensured by Theorem 5.2.2.

5.4 Applications to some new problems

In this section, we apply our theory to two important yet challenging problems in

the field — the Tucker nearest problem and the structured Kronecker approximation

problem. While numerical algorithms have been proposed and used in practice, we

find little discussion of convergence analysis in the literature. This is probably due

to the fact that the algorithms usually involve complex algebraic manipulations.

Nonetheless, our framework requires fairly mild conditions on these manipulations.

We can explain the convergence.

For the ease of later reference, we restate the notion of orthogonality and polar

decomposition defined in Lemma 4.3.1 which will appear in both problems. Let

S (p, q) denote the Stiefel manifold of matrices in Rp×q with orthonormal columns

and Iq the identity matrix in Rq×q. The following lemma is essentially the well known

polar decomposition [89,90,102], yet its view as the normal bundle of an element Q

on S (p, q) is useful for the subsequent discussion [47].

Lemma 5.4.1. Given a matrix Q ∈ S (p, q), then a matrix Z ∈ Rp×q whose orthog-

onal projection to S (p, q) is precisely Q if and only if Q>Z is symmetric.

Proof. LetQ⊥ denote the matrix in S (p, p−q) so that the augmented matrix [Q,Q⊥]

is orthogonal. It is easy to see that the tangent space TQS (p, q) at Q ∈ S (p, q) is

made of matrices in the form

H = QK +Q⊥Q
>
⊥W,

where K ∈ Rq×q is skew-symmetric and W ∈ Rp×q is arbitrary. For the vector Z−Q

to be perpendicular to the surface S (p, q), it must be such that

ProjTQS (p,q)(Z −Q) = Q
Q>(Z −Q)− (Z −Q)>Q

2
+Q⊥Q

>
⊥(Z −Q) = 0. (5.16)
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Note that the two terms in the middle equation of (5.16) are mutually orthogonal.

Therefore, each term must be zero by itself. Upon simplification, we see that Z−Q

is perpendicular to S (p, q) if and only if
Q>Z = Z>Q,

Q>⊥Z = 0.

(5.17)

Given Q, (5.17) is a homogeneous linear system of pq− q(q+1)
2

independent equations

in pq unknowns of Z. So the solutions form a subspace of dimension q(q+1)
2

. Indeed,

if we write the columns of Z ∈ Rp×q in terms of the orthonormal basis

Z = QS +Q⊥T,

where S ∈ Rq×q and T ∈ R(p−q)×q, then Z is a solution to (5.17) if and only if

T = Q>⊥Z = 0 and S = Q>Z is symmetric.

In the above lemma, we look up from a given Q ∈ S (p, q) for its normal bundle

in Rp×q. Now we look down from a given Z ∈ Rp×q for its projection onto S (p, q).

Corollary 5.4.1. Given an arbitrary Z ∈ Rp×q, suppose that Z = UP is the polar

decomposition of Z where U ∈ S (p, q) and P ∈ Rq×q is symmetric and positive

semi-definite. Then U is the projection of Z onto S (p, q) and is the nearest matrix

in S (p, q) to Z.

In the polar decomposition, we stress that the symmetric matrix P = U>Z is

always unique, but U is unique only if Z is of full column rank.

5.4.1 Tucker nearest problem

Given the rank parameter r = (r1, . . . , rk), an order-k tensor in the form

A =

r1∑
j1=1

. . .

rk∑
jk=1

βj1,...,jkv
(1)
j1
⊗. . .⊗v

(k)
jk
∈ RI1×...×Ik (5.18)
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with orthonormal vectors v
(`)
j`
∈ RI` is said to be in the Tucker format with core

tensor

β := [βj1,...,jk ] ∈ Rr1×...×rk . (5.19)

If we assemble the orthonormal vectors into factor matrices by denoting

V (`) := [v
(`)
1 , . . . ,v(`)

r`
] ∈ RI`×r` , ` = 1, . . . , k, (5.20)

then V (`) ∈ S (I`, r`) and the tensor A in (5.18) can be written as

A = β ×1 V
(1) ×2 V

(2) ×3 . . .×k V (k), (5.21)

where ×d denotes the mode-d product2 [114]. Given an order-k tensor T ∈ RI1×...×Ik ,

the Tucker nearest problem is to find a tenor in the Tucker form (5.21) with a fixed

rank parameter r such that

h̃(β, V (1), . . . , V (k)) := ‖β ×1 V
(1) ×2 V

(2) ×3 . . .×k V (k) − T‖F (5.22)

is minimized.

For an order-k tensor T ∈ RI1×...×Ik , let vec(T ) denote the linear array where

the entry τi1,...,ik of T is saved at the location

i1 +
k∑
s=2

(is − 1)
s−1∏
t=1

It (5.23)

of the array. Then it can be verified that (5.21) is equivalent to [15, Formula (12)]

vec(A) = (V (k) ⊗ . . .⊗ V (1))vec(β), (5.24)

where ⊗ stands for the Kronecker product. We make it clear that the notation

⊗ defined between vectors is the outer product [91, 123] while ⊗ stands for the

Kronecker product between matrices in this thesis. The expression above sheds an

2Given an order-k tensor T ∈ RI1×......×Id×...×Ik and a matrix M ∈ Rm×Id , the mode-d

product Θ = T ×d M is defined to be the tensor in RI1×...×Id−1×m×Id+1×...×Ik with element

fi1,...,id−1,t,id+1,...ik :=
∑Id

s=1mt,sτi1,...,id−1,s,id+1,...ik .
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important insight — entries in vec(β) are the coordinates of vec(A) in terms of the

orthonormal columns of V (k) ⊗ . . .⊗ V (1), i.e.,

vec(β) = (V (k) ⊗ . . .⊗ V (1))>vec(A). (5.25)

Therefore, given fixed matrices V (`) ∈ S (I`, r`), ` = 1, . . . , k, the minimizer β in

(5.22) is given by the projection of vec(T ) onto the column space of V (k)⊗ . . .⊗V (1),

or equivalently,

β := T ×1 V
(1)> ×2 V

(2)> ×3 . . .×k V (k)> ∈ Rr1×...×rk . (5.26)

In this way, the Tucker nearest problem is equivalent to the problem of maximizing

the Frobenius norm of the tensor

π(V (1), . . . , V (k)) := T ×1 V
(1)> ×2 V

(2)> ×3 . . .×k V (k)>, (5.27)

subject to the constraint that V (`) ∈ S (I`, r`), ` = 1, . . . , k.

The relationship (5.26) can further be expressed in terms of the mode-d unfolding

[15, Formula (11)]

β(d) = V (d)> T(d)(V
(k) ⊗ . . .⊗ V (d+1) ⊗ V (d−1) ⊗ . . .⊗ V (1))︸ ︷︷ ︸

Υ(d)

, d = 1, . . . k, (5.28)

where the mode-d unfolding T(d) is simply a rearrangement of T into a matrix of size

Id ×
∏

` 6=d I` by assigning the element (T(d))id,j := τi1,...,ik with j = 1 +
∑k

s=1,s 6=d(is−

1)
∏s−1

t=1 It. Likewise, β(d) is an unfolding of size rd ×
∏

` 6=d r`. Taking advantage of

the form (5.28) by modifying one factor matrix V (`) a time via the singular value

decomposition, Algorithm 10 therefore has been proposed in the field as a way for

tackling the Tucker nearest problem. By construction, we also know that

λ[p] :=‖π(V
(1)

[p] , . . . , V
(k)

[p] )‖F ≤ λ
(1)
[p+1] ≤ λ

(2)
[p+1] ≤ . . . ≤ λ

(k)
[p+1]

=‖π(V
(1)

[p+1], . . . , V
(k)

[p+1])‖F ,
(5.29)

so the convergence of scalars {λ[p]} is clear. Thus far, however, we have not seen

any proof of convergence for the iterates {(V (1)
[p] , . . . , V

(k)
[p] )} in the literature. Using

our framework, we can establish the convergence as follows.
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Without loss of generality, consider the objective function to be maximized as

h(V (1), . . . , V (k)) =
1

2
‖π(V (1), . . . , V (k))‖2

F =
1

2
〈V (d)>Υ(d), V

(d)>Υ(d)〉 (5.30)

which, as indicated in (5.28), has the same value
‖β‖2F

2
for all d = 1, . . . , k. Clearly,

h is secondly order continuous differentiable. The definition of V
(`)

[p+1] at Line 5 is the

unique global maximizer of the restricted function

h`(W ) :=
1

2
‖π(V

(1)
[p+1], . . . V

(`−1)
[p+1] ,W, V

(`+1)
[p] , . . . , V

(k)
[p] )‖2

F , (5.31)

subject to the constraint that W ∈ S (I`, r`), so Algorithm 10 is an ALS algorithm.

To apply our framework, we need to check out two additional conditions. First,

the partial gradient of h with respect to a general V (d) is given by

∇(d)h(V (d)) :=
∂h

∂V (d)
= Υ(d)Υ

>
(d)V

(d), d = 1, . . . , k. (5.32)

At a stationary point, the projection of ∇(d)h(V (d)) onto the tangent space of

S (Id, rd) is zero, implying that

Υ(d)Υ
>
(d)V

(d) = V (d)V (d)>Υ(d)Υ
>
(d)V

(d), d = 1, . . . , k. (5.33)

In other words, the stationary points of the objective function (5.30) are solu-

tions to a system of
∑k

d=1 Idrd polynomials (5.33) that is parameterized by T . By

Lemma 5.2.2, we conclude that for almost all tensors, the accumulation points of

Algorithm 10 are finite and geometrically isolated.

Second, each of the constraint V (`) ∈ S (I`, r`), ` = 1, . . . , k, is a compact set.

The local maximizer for h does exist. The Hessian of h in (5.30), which depends on

T , at its local maximizer is necessarily negative semi-definite. Furthermore, positive

definite matrices form an open set whose boundaries consist of positive semi-definite

matrices which resides on a submanifold of codimension 1. A small perturbation

can easily disrupt the semi-definiteness. We may therefore assume that for almost

all tensors, the Hessian of h at one of the stationary point is symmetric and positive

definite.

By now, all conditions in Theorem 5.2.2 are satisfied. To our knowledge, the

following result is new.
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Algorithm 10 (HOSVD method for Tucker nearest problem.)

Input: A generic order-k tensor T , a fixed rank parameter r, and k initial matrix

V
(`)

[0] ∈ RI`×r` with orthonormal columns,

Output: A local best Tucker approximation to T

1: for p = 0, 1, · · · , do

2: for ` = 1, 2, · · · , k do

3: B
(`)
[p+1]

:= T(`)(V
(k)

[p] ⊗ . . .⊗ V
(`+1)

[p] ⊗ V (`−1)
[p+1] ⊗ . . .⊗ V

(1)
[p+1]) {Of size

I` ×
∏k

j=1,j 6=` rj.}

4: [U, S, ~] = svds(B
(`)
[p+1], r`) {Compute the largest r` singular values and left

singular vectors.}

5: V
(`)

[p+1]
:= U

6: λ
(`)
[p+1] = ‖S‖F

7: end for

8: end for

Theorem 5.4.1. For almost all order-k tensor T , the iterates {(V (1)
[p] , . . . , V

(k)
[p] )}

generated by Algorithm 10 converge to a local solution of the Tucker nearest problem.

5.4.2 Structured Kronecker approximation

Given A ∈ Rm×n with m = m1m2 and n = n1n2 and a small enough but

fixed integer r, the Kronecker approximation problem concerns finding matrices

Bi ∈ Rm1×n1 and Ci ∈ Rm2×n2 such that the objective function

φA(B1, . . . , Br, C1, . . . , Cr) = ‖A−
r∑
i=1

Bi ⊗ Ci‖2
F , (5.34)

is minimized [146]. The problem is equivalent to a rank-r approximation problem

[181]

‖A−
r∑
i=1

Bi ⊗ Ci‖F = ‖R(A)−
r∑
i=1

vec(Bi)vec(Ci)
>‖F , (5.35)
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where R(A) ∈ Rm1n1×m2n2 is a rearrangement of A as

R(A) :=


vec(A1,1)>

vec(A2,1)>

...

vec(Am1,n1)
>


,

if A is partitioned as a m1 × n1 block matrix with blocks Aij ∈ Rm2×n2 ,

A =


A11 A12 · · · A1,n1

A21 A22 · · · A2,n1

...
...

. . .
...

Am1,1 Am1,2 · · · Am1,n1


.

The Kronecker approximation problem (5.34) therefore can be solved effectively by

using the truncated singular value decomposition.

It is important to note that the Kronecker product often inherits structures from

its factors. For example, the following properties are listed in [180].

If B and C are



nonsingular

lower(upper) triangular

banded

symmetric

positive definite

stochastic

Toeplitz

permutations

orthogonal



, then B ⊗ C is



nonsingular

lower(upper) triangular

banded

symmetric

positive definite

stochastic

Toeplitz

permutations

orthogonal



.

Also, with respect to factorizations, the LU -with-partial-pivoting, Cholesky, and QR

factorizations of B⊗C merely require the corresponding factorizations of B and C.

An interesting question about the converse then arises, which we refer to as the

structured Kronecker approximation problem. Let ΩB ⊂ Rm1×n1 and ΩC ⊂ Rm2×n2
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denote the subsets of desired structures of factors, respectively. How should the

approximation (5.34) be accomplished if it is expected that Bi ∈ ΩB and Ci ∈ ΩC ,

even if the given A is not structured?

In what follows, we consider only the case r = 1. Generalizations to general r

is possible but with tedious manipulations. See, for example, the work in [100] for

the block Toeplitz structure. Once the procedure such that the generating function

is specified, we think that it is possible that our framework is still applicable.

For the case r = 1, the following result naturally defines an alternating procedure.

In [181, Theorem 4.1], the result can be interpreted as the power method applied

to R(A) for finding the left and right singular vectors associated with its largest

singular value.

Lemma 5.4.2. Let A ∈ Rm×n with m = m1m2 and n = n1n2 be given.

1. Suppose C ∈ Rm2×n2 is fixed, then the matrix B ∈ Rm1×n1 defined by

bij :=
〈Aij, C〉
〈C,C〉

, 1 ≤ i ≤ m1, 1 ≤ j ≤ n1, (5.36)

minimizes ‖A−B ⊗ C‖F .

2. Suppose B ∈ Rm1×n1 is fixed, then the matrix C ∈ Rm2×n2 defined by

cij :=
〈Ãij, B〉
〈B,B〉

, 1 ≤ i ≤ m2, 1 ≤ j ≤ n2, (5.37)

where Ãij = A(i : m2 : m, j : n2 : n) ∈ Rm1×n1, minimizes ‖A−B ⊗ C‖F .

The above lemma can then be exploited to answer a few structured approxima-

tion problems, provided that A is similarly structured. We mention, for example,

the cases that

If A and B are


nonnegative

symmetric

positive definite

 ,
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Algorithm 11 (ALS method for structured Kronecker approximation.)

Input: A generic matrix A ∈ Rm1m2×n1n2 , two specific structures ΩB and ΩC , an

initial matrix C0 ∈ ΩC ,

Output: A local best structured Kronecker approximation to A.

1: for k = 0, 1, · · · , do

2: Bk+1 = arg min
B∈ΩB

‖A−B ⊗ Ck‖F
3: Ck+1 = arg min

C∈ΩC

‖A−Bk+1 ⊗ C‖F
4: end for

then the minimizer C of ‖A−B ⊗ C‖F is


nonnegative

symmetric

positive definite

 .

For other structures, including the case that the given A does not have any structure

at all, the formulas in Lemma 5.4.2 does not preserve the structures in general. Some

other numerical procedures are needed.

The prototypical ALS procedure proposed in Algorithm 11 is a plausible pro-

cedure to tackle the structured Kronecker approximation problem, provided the

structured least squares subproblems at Lines 2 and 3 can be resolved. Even so,

the nonlinear nature of the Kronecker product would make a formal proof of con-

vergence of the iterates for the general case challenging. Our contribution is that, if

the procedures can be checked to satisfy the conditions demanded in Theorem 5.2.2,

then our framework kicks in and the method will converge.

To demonstrate our point, we concentrate on two special structures — orthog-

onal factors and stochastic factors — in the subsequent discussion. We propose

algorithmic details for computing the structured least squares solutions and carry

out the crucial task of checking that the conditions in Theorem 5.2.2 are met. At

the end, we are able to draw the conclusion of convergence.

Orthogonal factors. To fix the idea, we restate our problem: Given A ∈

Rm1m2×n1n2 , where m1 ≥ n1 and m2 ≥ n2, find Q1 ∈ S (m1, n1) and Q2 ∈ S (m2, n2)
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so that the objective function

g(Q1, Q2) :=
1

2
‖A−Q1 ⊗Q2‖2

F (5.38)

is minimized. We shall consider the constraint as the manifold S (m1, n1)×S (m2, n2)

with the product topology.

To find the critical point for the constrained optimization of (5.38), we compute

the projected gradient of g(Q1, Q2). We begin with the action of the Fréchet deriva-

tive of g(Q1, Q2) at a general point (H1, H2) ∈ Rm1×n1 ×Rm2×n2 . Under the product

topology, we may consider the partial derivatives separately. Thus, the action of the

partial derivative of g with respect to Q1 on H1 is given by

∂g

∂Q1

.H1 = 〈−H1 ⊗Q2, A−Q1 ⊗Q2〉

= −〈vec(H1),R(A−Q1 ⊗Q2)vec(Q2)〉

= −〈H1,A~(m1,n1) Q2 − n2Q1〉,

where the block matrix A is considered as an order-4 tensor A ∈ Rm1×n1×m2×n2 and,

similar to the operation (5.13),

A~(m1,n1) Q2 :=
[
〈Aij, Q2〉

]
∈ Rm1×n1 .

Similarly,

∂g

∂Q2

.H2 = −〈H2,A~(m2,n2) Q1 − n1Q2〉

with

A~(m2,n2) Q1 :=
[
〈Ãij, Q1〉

]
∈ Rm2×n2 .

By the Riesz representation theorem, the partial gradients of g(Q1, Q2) can be in-

terpreted as 
∂g
∂Q1

= n2Q1 −A~(m1,n1) Q2,

∂g
∂Q2

= n1Q2 −A~(m2,n2) Q1.

(5.39)
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We now project the partial gradients onto the tangent spaces of the respective

Stiefel spaces. Applying (5.16) to both partial gradients, we obtain

ProjTQ1
S (m1,n1)

∂g
∂Q1

= Q1
(A~(m1,n1)

Q2)>Q1−Q>1 (A~(m1,n1)
Q2)

2
− (Im1 −Q1Q

>
1 )A~(m1,n1) Q2,

ProjTQ2
S (m2,n2)

∂g
∂Q2

= Q2
(A~(m2,n2)

Q1)>Q2−Q>2 (A~(m2,n2)
Q1)

2
− (Im2 −Q2Q

>
2 )A~(m2,n2) Q1.

We now are ready to characterize the first order optimality condition for the orthog-

onal Kronecker approximation problem (5.38).

Lemma 5.4.3. For (Q1, Q2) to be a critical point for (5.38), it must be such that

1. Q1 is the orthogonal portion in the polar decomposition of A~(m1,n1) Q2, and

2. Q2 is the orthogonal portion in the polar decomposition of A~(m2,n2) Q1

simultaneously.

Proof. The first order optimality condition is that the projected gradients should be

zero. The conclusion follows from the argument used in proving Corollary 5.4.1.

Based on this characterization, we are now able to define the two steps at Lines 2

and 3 in Algorithm 11 more specifically as in Algorithm 12 for the orthogonal Kro-

necker approximation. Furthermore, using our framework, we are able to argue for

the convergence of the algorithm under the following assumptions.

Theorem 5.4.2. Assume that

1. The given matrix A is such that the Hessian of the corresponding objective

function g defined in (5.38) is positive definite at one of its local minimizers;

and

2. The initial matrix Q
(0)
2 ∈ S (m2, n2) is such that the subsequent matrices

{A~(m1,n1) Q
(p)
2 } and {A~(m2,n2) Q

(p+1)
1 } defined in Algorithm 12 are of full

column rank in Rm1×n1 and Rm2×n2, respectively.
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Then the sequence {(Q(p)
1 , Q

(p)
2 )} generated by Algorithm 12 converges to a local

solution to the orthogonal Kronecker approximation problem.

Proof. To apply our framework for convergence, the conditions needed by Theo-

rem 5.2.2 should be satisfied by Algorithm 12. We check out two particular condi-

tions, while others are either obvious or assumed.

Observe first that the definitions at Lines 2 and 3 actually represent an ALS

optimization mechanism because

g(Q1, Q2) = ‖R(A)− vec(Q1)vec(Q2)>‖2
F = ‖A~(m1,n1) Q2 −Q1‖2

F

and, by Corollary 5.4.1, the nearest Q ∈ S (p, q) to a fixed point Z ∈ Rp×q comes

from the polar decomposition of Z. The polar decomposition is unique for a full

rank matrix and is continuous in its parameters.

Observe next that the accumulation points of the iteration must satisfy the

system of polynomials [130,189]

Q>1 (A~(m1,n1) Q2) = (A~(m1,n1) Q2)>Q1,

Q>2 (A~(m2,n2) Q1) = (A~(m2,n2) Q1)>Q2,

A~(m1,n1) Q2 = Q1Q
>
1 (A~(m1,n1) Q2),

A~(m2,n2) Q1 = Q2Q
>
2 (A~(m2,n2) Q1).

(5.40)

which, by Lemma 5.2.2, contains only geometrically isolated solutions for almost all

data matrix A. The iterates
{

(Q
(p)
1 , Q

(p)
2 )
}

are obviously bounded as they are from

the Stiefel manifolds. Conditions in Theorem 5.2.2 are satisfied.

We remark that the first assumption in Theorem 5.4.2 holds for generic A. We

conjecture that the second assumption is also true for generic A and Q
(0)
2 because,

otherwise, rank deficient matrices are the union of low dimensional manifolds and

are susceptible to perturbations. At present we do not have a formal proof of the

genericity, so we state them as assumptions.

Stochastic factors. Again, we first restate the problem: Let M(q) denote

the convex and compact subset of all column stochastic matrices in Rq×q. Given
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Algorithm 12 (Polar method for orthogonal Kronecker approximation.)

Input: A generic matrix A ∈ Rm1m2×n1n2 , and an initial matrix Q
(0)
2 ∈ S (m2, n2),

Output: A local best orthogonal Kronecker approximation to A

1: for p = 0, 1, · · · , do

2: [Q
(p+1)
1 , P

(p+1)
1 ] = poldec(A~(m1,n1) Q

(p)
2 ) {using polar decomposition.}

3: [Q
(p+1)
2 P

(p+1)
2 ] = poldec(A~(m2,n2) Q

(p+1)
1 ) {using polar decomposition.}

4: end for

A ∈ Rn1n2×n1n2 , the stochastic Kronecker approximation concerns finding the factors

B ∈M (n1) and C ∈M (n2) so that the objective function

ψ(B,C) :=
1

2
‖A−B ⊗ C‖2

F (5.41)

is minimized.

It is worth mentioning that the problem has an interesting interpretation. The

entry of B⊗C has the form bijcst. Thus, the approximation amounts to aggregating

the n1n2 states into n1 groups G1, . . . , Gn1 , each of size n2, such that the transition

probability among states within each group is the same. Thus, bij stands for the

probability of transition from groupGj to stateGi while cst stands for the probability

of transition from state t to state s within any group.

Each of the two structured least squares subproblems in Algorithm 11 can easily

be formulated to take into the stochastic structure. For instance, the subproblem

min
1>n1B=1>n1 ,B≥0

‖A−B ⊗ C‖2
F , (5.42)

where C ∈ M (n2) is fixed and 1n1 ∈ Rn1 is the column vector of all ones, is a

classical constrained linear least squares problem which can be solved via existent

optimization software package [125]. Furthermore, the problem (5.42) is a convex

programming problem. If we assume the generic condition that the data are such

that the objective function is strictly convex, then the solution to (5.42) is unique.

Replacing the constraints in Algorithm 11 by M (n1) and M (n2), and equipped

with the ability to solve each subproblem of the restricted objective functions, our

concern is whether the iteration will converge.
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To apply our theory, we need to check in particular the finiteness and isolation

of stationary points. The procedure should be quite routine now, except that the

feasible sets now have boundaries, i.e., some of the entries of B or C are zero. The

projection at the boundaries is equivalent to the KKT conditions. For simplicity, we

shall omit the details. We only demonstrate the projected gradient for the problem

(5.42) at an interior point. The partial gradient of ψ with respect to B is

∂ψ

∂B
= B‖C‖2

F − (A~(n1,n1) C) ∈ Rn1×n1 . (5.43)

The tangent space of M (n1) is made of matrices whose column sum is zero. The

projection of any Z ∈ Rn1×n1 onto the tangent space of M (n1) is trivially given by

ProjTB(M (n1))(Z) = Z − 1n1

[∑n1

i=1 zi,1
n1

, . . . ,

∑n1

i=1 zi,n1

n1

]
.

So the projected gradient can be calculated. Likewise, the projected gradient of ψ

with respect to C can be calculated. In all, setting the projected gradient of ψ(B,C)

to zero is equivalent to a system of polynomials which, by Lemma 5.2.2, contains

finitely many geometrically isolated solutions for a generic A. Without filling in more

details, we have sketched a proof by using our theory that the matrices generated

by the ALS iteration for the stochastic Kronecker approximation problem converge

almost surely.



Chapter 6
Conclusion

In this thesis, we mainly focus on finding the best low rank CP approximation

for rank-1 and rank-R (R > 1) respectively. Our algorithms are all based on the

well developed notion of singular value decomposition (SVD) which update two

factors simultaneously. Some backgrounds and applications of tensor decompositions

and approximations are introduced in the first chapter, especially on CP model.

Moreover, some existing algorithms and convergence analysis for tensor low rank

approximations are also mentioned in Chapter 1.

Applying SVD offers a simpler alternative argument that generically the best

rank-1 approximation to given symmetric tensor is symmetric. As a by-product,

three SVD-based algorithms are proposed in Chapter 2 for computing the symmetric

best rank-1 approximation, which should perform superior to the classical ALS

methods. The main contribution is on the proof of convergence of both the objective

values and the iterates generated by these methods.

In Chapter 3, we consider the best rank-1 approximation of a generic tensor. In

contrast to the conventional ALS method that updates one factor a time for the rank-

1 tensor approximation, the SVD-based method updates two factors simultaneously.

We prove that the iteration by such a mechanism does converge for almost all tensors

under Condition A. It is conjectured that tensors satisfying Condition A are generic,

but an analytic proof is yet to be further investigated. For large scale problems,
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numerical experiments suggest that the SVD-based methods do have the advantage

of saving the computational time. On the other hand, partly due to the nonlinearity

of the objective function, the SVD-based methods do not necessarily provide a better

approximation in the long run.

In Chapter 4, an SVD-based algorithm has been presented for the orthogonal low

rank approximation problem (4.7) of tensors, which includes the completely orthog-

onal low rank approximation [40] and semi-orthogonal low rank approximation [190]

as two special cases. The convergence of the proposed algorithm has been analyzed.

Numerical examples have been provided to illustrate the convergence behavior of

our algorithm.

A general theory has been established in Chapter 5 as a useful tool for arguing

that an alternating optimization method will converge under mild conditions. The

conditions are the continuity of the algorithm, the differentiability of the objective

function, the boundedness, finiteness, and geometrical isolation of the accumulation

points. An array of problems arising from different backgrounds are demonstrated

to be under this framework and satisfy these conditions. In particular, algorithms

designed for the Tucker nearest problem and the structured Kronecker approxima-

tion problems are shown to converge, which is perhaps new in the literature. The

theory might serve as an algorithmic foundation for many other methods having the

characteristics of iteration by alternating variables.

Besides the above contents, we are also interested in many other tensor problems

such as tensor train, segment CP and Tucker approximation, quantum entanglement

and so on.
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